TEST 3 @ 130 points

Write in a neat and organized fashion. Write your complete solutions on SEPARATE PAPER. You should use a pencil. For an exercise to be complete there needs to be a detailed solution to the problem. Do not just write down an answer. No proof, no credit given! Clearly label each exercise.

1. Solve each equation in \mathbb{C} (the set of complex numbers) by the indicated method.
a) $2(x+3)^{2}+80=0$ by the square root property.
b) $5 y^{2}=2 y-7$ by completing the square.
c) $t^{2}+\frac{x}{2}=\frac{3}{2}$ by the quadratic formula.
d) $h=-16 t^{2}+\frac{23}{3} t$ solve for t in terms of h.
2. Solve the following equations. Give exact answers.
a) $2 x^{4}-3 x^{2}+1=0$
b) $\log _{3}(5 x-1)-1=0$
c) $4^{x}=11$
d) $\log _{8}(x+5)-\log _{8} 2=1$
3. Solve the following inequalities.
a) $x^{2}-6 x+5 \leq 0$
b) $\frac{1}{x-3}<\frac{3}{x+2}$
4. Let $f(x)=5 x-2$ and $g(x)=\frac{1-x}{x+2}$. Answer the following questions:
a) Find $(g \circ f)(x)$.
b) $(f \circ g)(1)$
c) Find $f^{-1}(x)$.
d) Find $g^{-1}(x)$.
5. Simplify the following expressions.
a) $4 \ln x+7 \ln y-3 \ln z$
b) $\frac{1}{2}\left(\log _{5} x+\log _{5} y\right)-2 \log _{5}(x+1)$
c) $\log _{3} 405-\log _{3} 5+\log 5+\log 2$
d) $\log _{10}\left(\log _{3}\left(\log _{5} 125\right)\right)$
6. For the equation given below, answer all the questions and graph the function (Be sure to label the axes and all points used). SHOW ALL WORK!

$$
y=-10 x^{2}-2 x+1
$$

a) What type of curve is this?
b) What is the y-intercept?
c) What is the vertex
d) What are the x -intercept(s) (if any)?
e) What is the domain of the function?
f) What is the range of the function?
g) Using the graph above, solve the following inequality: $-10 x^{2}-2 x+1<0$
h) What is the vertex form of the equation?
7. Find the domain of each function:
a) $f(x)=-\frac{1}{2} x^{2}+3 x-57$
b) $g(x)=7^{x}-11$
c) $h(x)=\ln (7-x)$
8. Graph $f(x)=4^{x}$ and $f^{-1}(x)=\log _{4} x$ on the same coordinate system showing the symmetry about the bisector line $y=x$. Label the axes and all the points.

Choose THREE of the following problems.

1) The number of bacteria present in a culture after t hours is given by the formula $N=500 e^{0.59 t}$.
a) How many bacteria will be there after $1 / 2$ hour?
b) How long will it be before there are 500,000 bacteria?
2) The owners of a small fruit orchard decide to produce gift baskets as a sideline. The cost per basket for producing x baskets is $\quad C=0.01 x^{2}-2 x+120$. How many baskets should they produce in order to minimize the cost per basket? What will their total cost be at that production level?
3) A model rocket launched with an upward velocity of 3.75 meters per second. The height of the rocket after t seconds if given by the formula: $h=-4.9 t^{2}+3.75 t+12.25$.
a) How high is the rocket off the ground to start with?
b) How long does it take the rocket to hit the ground?
c) When does the rocket reach a height of 16 meters?
4) You have 600 feet of fencing to enclose a rectangular plot that borders on a river. If you do not fence the side along the river, find the length and width of the plot that will maximize the area. What is the largest area that can be enclosed?
5) In a laboratory experiment, researchers establish a colony of 100 bacteria and monitor its growth. The experiments discover that the colony triples in population every day.
a) Fill in Table 1. showing the population, $P(t)$, of bacteria t days later.
b) Find a function that gives the population of the colony at any time t in days.
c) Graph the function. Label the axes and the points used.
d) How many bacteria will be present after 13 days?
e) How long will it take before there are 37,000 bacteria?

\mathbf{t}	$\mathbf{P}(\mathbf{t})$
0	
10	
20	
30	
40	

6) India is currently one of the world's fastest-growing countries. By 2040, the population of India will be larger than the population of China; by 2050, nearly one-third of the world's population will live in these two countries alone. The exponential function

$$
f(x)=574(1.026)^{x}
$$

models the population of India, $f(x)$, in millions, x years after 1974.
a) What was India's population in 1974?
b) Find $f(27)$ and its meaning.
c) Find India's population, to the nearest million, in the year 2028 as predicted by this function.
d) How long will it be until the population reaches 1000 million people?

EXTRA CREDIT

\#1 @ 3 points
Find the values of a and b such that the parabola $y=a x^{2}+b x+3$ contains the points $\quad(-1,2)$ and $(1,6)$.
\#2 @ 4 points
Find a formula for the cost of a sofa t years from now if it costs $\$ 1200$ and the inflation rate is 8% annually.
\#3 @ 1 point
Suppose a parabola has only one x-intercept. What can you say about the vertex of the parabola (where is it located)?
\#4 @ 1 point
If you know the vertex of a parabola, how many more points do you need in order to find its equation?
\#5 @ 2 points
What are the only x-values at which $y=a x^{2}+b x+c$ can change signs?
\#6 @ 3 points
The parabola $y=-x^{2}+b x+c$ has x-intercepts at r_{1} and r_{2}.
What are the solutions of the inequality $-x^{2}+b x+c \leq 0$?
\#7 @ 4 points
State whether each statement is TRUE or FALSE. Justify your answer.
a) $\log (a+b)=\log a+\log b$
b) $\log \left(\frac{a}{b}\right) \neq \frac{\log a}{\log b}$
c) $\log 5 x^{2}=2 \log 5 x$
d) $\log (a b) \neq(\log a)(\log b)$
(3)

$$
\begin{aligned}
& h=-4.9 t^{2}+3.75 t+12.25 \\
& t=\text { time (in recross) }
\end{aligned}
$$

$$
\begin{aligned}
& t=\text { Gie (in rocs) } \\
& h=\text { height (in meters) }
\end{aligned}
$$

(a) initial height when $t=0$

$$
h=12.25 \text { meters }
$$

(6) $t=$? when $h=0$

$$
\begin{aligned}
& -4.9 t^{2}+3.75 t+12.25=0 \\
& 4.9 t^{2}-3.75 t-12.25=0 \\
& 490 t^{2}-375 t-1225=0 \\
& 98 t^{2}-75 t-245=0 \\
& t=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
\end{aligned}
$$

$$
t=\frac{-(-75) \pm \sqrt{(-75)^{2}-4(98)(-245)}}{2(98)}
$$

$$
=\frac{75 \pm \sqrt{101,665}}{196} \approx \frac{75 \pm 319}{196} .
$$

$t \simeq 2 \mathrm{tec}$ or $t \approx .2$
It will hit the swound after about 2 mon.
OR apply to quadratic
ponchela in the Hegiuming.

$$
\begin{gathered}
\quad-4.9 t^{2}+3.75 t+12.25=0 \\
t=\frac{-3.75 \pm \sqrt{(3.75)^{2}-4(-4.9)(12.75)}}{2(-4.9)}
\end{gathered}
$$

$$
\begin{aligned}
& \text { (c) } t=\text { ? when } \quad h=16 \\
& -4.9 t^{2}+3.75 t+12.25=16 \\
& 4.9 t^{2}-3.75 t+3.75=0
\end{aligned}
$$

$$
t=\frac{3.75 \pm \sqrt{(3.75)^{2}-4(4.9)(3.75)}}{2(4.9)}
$$

$$
t=\frac{3.75 \pm \sqrt{-59}}{2(4.9)} \notin \mathbb{R}
$$

The rocket will never reach a height of 16 meters.
Note that mon. height rocs at the vertex after $t_{v}=\frac{-3.75}{2(-4.9)} \approx 0.38 \times \sec$
and it is

$$
\begin{aligned}
& \text { and it is } \\
& -4.9(0.38)^{2}+3.75(0.38)+12.25
\end{aligned}
$$

max height ≈ 13 meters.

600 th fence $\Rightarrow 2 w+l=600$
Area $=$ maxim
$A=$ area

$$
A=l \cdot \omega
$$

$$
\left\{\begin{array}{l}
A=l=600 \Rightarrow l=600-2 \omega \\
A=l \cdot \omega C \\
A=(600-2 \omega) w \\
A=-2 \omega^{2}+600 w
\end{array}\right.
$$

parabola opens down
\Rightarrow maximuch occurs at the vertex $V\left(\omega_{v}, A_{v}\right)$

$$
w_{v}=\frac{-b}{2 a}=\frac{-600}{2(-2)}=\frac{-7}{150 f t}
$$

the uidth that mill maximite the area
Then

$$
\begin{aligned}
& l=600 \cdot 2 \omega \\
& l=600-300 \\
& l=300
\end{aligned}
$$

Then $A_{\max }=150 \mathrm{Ht}(300 \mathrm{HH})$
$A_{\text {mox }}=45,000{f f^{2}}^{2}$
(5)

t	$P(t)$
0	100
1	$100(3)=300$
2	$100(3)^{2}=900$
3	$100(3)^{3}=2700$
4	$100(3)^{4}$
t	$100(3)^{t}$

(b) $P(t)=100(3)^{t}$
(c)

(d) If $t=13$, then

$$
P(B)=100(3)^{13}=\frac{159,432,000}{\text { bact }}
$$

affer 13 doys
(e) $t=$? When $P(t)=37,000$ bacteria
$37,000=106(3)^{t}$

$$
370=3^{t}
$$

$\ln 370=\ln 3^{t}$
$\ln 370=t \ln 3$

$$
t=\frac{\ln 370}{\ln 3} \approx 5.4 \operatorname{doy} s
$$

(6) $f(x)=574(1.026)^{x}$
$x=\neq$ years a fter 1974
$f(x)=$ porfulation (in millions)
(a) when $x=0, f(0)=574(1.026)^{\circ}$
$=574$ milline
peopai i 1974
(b)
$f(27)=574(1.026)^{27}$
≈ 1148 millix
≈ 1148 miluin 1574 ,
perper 27 joors fter 19701
that io in 2001

$$
\begin{aligned}
& \text { (c) } \begin{aligned}
& 2028 \text { is } x=2028-1974 \\
& x=54 \\
& f(54)=574(1.026)^{54} \\
& \approx 2295 \text { uilline perpe }
\end{aligned}
\end{aligned}
$$

(d) $t=$? uhen $f(x)=1000$

$$
1000=574(1.026)^{x}
$$

$$
(1.026)^{x}=\frac{1000}{57}
$$

$\ln (1.026)^{x}=\ln \left(\frac{1000}{574}\right)$

$$
\begin{aligned}
& x \ln (1.026)=\ln \frac{1000}{571} \\
& x=\frac{\ln \frac{1000}{574}}{\ln 1.026} \approx 22 \text { yeors after } 174
\end{aligned}
$$

TET 3 - So WNIONS
(1) (a)

$$
\text { (a) } \begin{aligned}
& 2(x+3)^{2}+80=0 \\
& 2(x+3)^{2}=-80 \\
& (x+3)^{2}=-40 \\
& \sqrt{(x+3)^{2}}=\sqrt{-40} \\
& x+3= \pm 2 \sqrt{10} i \\
& x=-3 \pm 2 \sqrt{10 i}
\end{aligned}
$$

(b)

$$
\begin{aligned}
& \text { (b) } 5 y^{2}=2 y-7 \\
& 5 y^{2}-2 y=-7 \quad /=5 \\
& y^{2}-\frac{2}{5} y=-\frac{7}{5} \quad /+\frac{1}{25} \\
& \left(\frac{1}{2} \cos f \cdot y\right)^{2}=\left(\frac{1}{2} \cdot \frac{2}{5}\right)^{2}=\left(\frac{1}{5}\right)^{2}=\frac{1}{25} \\
& y^{2}-\frac{2}{5} y+\frac{1}{25}=-\frac{1}{5}+\frac{1}{25} \\
& \left(y-\frac{1}{5}\right)^{2}=\frac{-34}{25} \\
& \sqrt{\left(y-\frac{1}{5}\right)^{2}}=\sqrt{\frac{-34}{25}} \\
& y-\frac{1}{5}= \pm \frac{\sqrt{34}}{5} i \\
& y=\frac{1}{5} \pm \frac{\sqrt{34}}{5} i
\end{aligned}
$$

(c)

$$
\begin{aligned}
& t^{2}+\frac{t}{2}=\frac{3}{2} \\
& \alpha t^{2}+t-3=0 \\
& t=\frac{-b \pm \sqrt{s^{2}-4 a c}}{2 a} \quad \begin{array}{l}
a=2 \\
s=1 \\
c=-3
\end{array} \\
& t=\frac{-1 \pm \sqrt{(t)^{2}-4(2)(-3)}}{2(2)}=\frac{-1 \pm \sqrt{1+24}}{4} \\
& t=\frac{-1 \pm 5}{4} \quad \frac{-1+5}{4}=1 \\
& \left.t \in S 1, \frac{-3}{2}\right\}
\end{aligned}
$$

(2) $2 x^{4}-3 x^{2}+1=0$
et $x^{2}=t$
then $x^{4}=t^{2}$

$$
\begin{array}{ll}
2 t^{2}-3 t+1=0 \\
(2 t-1)(t-1)=0 \\
2 t-1=0 \quad \text { OR } \quad t-1=0 \\
t=\frac{1}{2} & t=1 \\
x^{2}=\frac{1}{2} & x^{2}=1 \\
\sqrt{x^{2}}=\sqrt{\frac{1}{2}} & \sqrt{x^{2}}=\sqrt{1} \\
x= \pm \frac{1}{\sqrt{2}} & x= \pm 1 \\
x= \pm \frac{\sqrt{2}}{2} & \\
\left\lvert\, x \in\left\{ \pm \frac{\sqrt{2}}{2}, \pm 1\right\}\right.
\end{array}
$$

(b) $\log _{3}(5 x-1)-1=0$
conditin: $5 x-1>0 \Rightarrow\left(x>\frac{1}{5}\right.$

$$
\begin{aligned}
& \log _{3}(5 x-1)=1 \\
& 3^{\prime}=5 x-1 \Rightarrow 5 x=4 \Rightarrow x=\frac{4}{5}
\end{aligned}
$$

(c) $4^{x}=11$

$$
x=\log _{4} 1 \prime
$$

on $\frac{\log 11}{\log 4}$

$$
\begin{aligned}
& (1 d) h=-16 t^{2}+\frac{23}{3} t \\
& 16 t^{2}-\frac{23 t+h=0}{3} / \cdot 3 \\
& 48 t^{2}-23 t+3 h=0 \\
& \text { quodratic mit }\left\{\begin{array}{l}
a=48 \\
6=-23 \\
c=3 h
\end{array}\right. \\
& t=\frac{23 \pm \sqrt{(23)^{2}-4(48)(3 h)}}{2(48)} \\
& t=\frac{23 \pm \sqrt{529-576 h}}{96}
\end{aligned}
$$

(d) $\log _{8}(x+5)-\log _{8} 2=1^{-2-}$
condition.

$$
x+5>0
$$

$$
x>-5
$$

$$
\begin{aligned}
& \log _{8} \frac{x+5}{2}=1 \\
& 8^{\prime}=\frac{x+5}{2} \\
& x+5=16 \\
& x=11
\end{aligned}
$$

(3) (a) $x^{2}-6 x+5 \leq 0$
let $y=x^{2}-6 x+5$ poodalola optus upword

So. $x^{2}-6 x+5 \leq 0$ iff $x \in[1,5]$

$$
\begin{aligned}
& \text { (b) } \frac{1}{x-3}<\frac{3}{x+2} \\
& \frac{x-3}{\frac{3}{x+2}-\frac{1}{x-3}>0} \\
& \angle(0)(x+2)(x-3) \\
& \frac{3(x-3)-(x+2)}{(x+2)(x-3)}>0 \\
& \frac{3 x-9-x-2}{(x+2)(x-3)}>0 \\
& \frac{2 x-11}{(x+2)(x-3)}>0
\end{aligned}
$$

$$
\frac{1}{x-3}<\frac{3}{x+2} \text { iff }
$$

$$
\begin{aligned}
& \frac{3}{x+2}-\frac{1}{x-3}>0177 \\
& x \in(-2,3) \cup\left(\frac{11}{2}, \infty\right)
\end{aligned}
$$

(4)

$$
\begin{aligned}
& f(x)=5 x-2 \\
& g(x)=\frac{1-x}{x+2}
\end{aligned}
$$

(a)

$$
\begin{gathered}
(g f)(x)=g(f(x)) \\
=g(5 x-2)
\end{gathered}
$$

$$
=\frac{1-(5 x-2)}{(5 x-2)+2}=\frac{1-5 x+2}{5 x-2+2}
$$

$(g \circ f)(x)=\frac{3-5 x}{5 x}$
(b) $(f \circ g)(1)=f(g(1))$

$$
\begin{aligned}
g(1)=\frac{1-1}{1+2} & =\frac{0}{3}=0 \\
\text { fo. }(f \circ g)(1) & =f(g(11) \\
& =f(0) \\
& =5(0)-2=-2
\end{aligned}
$$

$(f \circ g)(1)=-2$
(c) $f(x)=5 x-2$

1st $y=5 x-2$
and folle for x

$$
\begin{aligned}
& 5 x=y+2 \\
& x=\frac{y+2}{5}
\end{aligned}
$$

Fra $x \ll y$

$$
\begin{gathered}
y=\frac{x+2}{5} \\
f^{-1}(x)=\frac{x+2}{5}
\end{gathered}
$$

(d) $\quad e(x)=\frac{1-x}{x+2}$
ist $y=\frac{1-x}{x+2}$
and folve for x

$$
\begin{gathered}
y(x+2)=1-x \\
y x+2 y=1-x \\
y x+x=1-2 y \\
x(y+1)=1-2 y \\
x=\frac{1-2 y}{y+1}
\end{gathered}
$$

3rd $x<y$

$$
\begin{aligned}
& y=\frac{1-2 x}{x+1} \\
& g^{-1}(x)=\frac{1-2 x}{x+1}
\end{aligned}
$$

(5)(a) $4 \ln x+7 \ln y-3 \ln z=$

$$
\begin{aligned}
& =\ln x^{4}+\ln y^{7}-\ln z^{3} \\
& =\ln x^{4} y^{7}-\ln z^{3} \\
& =\ln \left(\frac{x^{4} y^{7}}{z^{3}}\right)
\end{aligned}
$$

$$
\text { (b) } \begin{aligned}
& \frac{1}{2}\left(\log _{5} x+\log _{5} y\right)-2 \log _{5}(x+1)= \\
= & \frac{1}{2} \log _{5}(x y)-\log _{5}(x+1)^{2} \\
= & \log _{5}(x y)^{\frac{1}{2}}-\log _{5}(x+1)^{2} \\
= & \log _{5} \sqrt{x y}-\log _{5}(x+1)^{2} \\
= & \log _{5} \frac{\sqrt{x y}}{(x+1)^{2}}
\end{aligned}
$$

(c) $\log _{3} 405-\log _{3} 5+\log 5+\log 2=$

$$
=\log _{3} \frac{405}{5}+\log 5.2
$$

$$
=\log _{3} 81+\log 10
$$

$$
=4+1=5
$$

$$
\begin{aligned}
& \text { (d) } \begin{array}{l}
\log _{10}\left(\log _{3}\left(\log _{5} 125\right)\right)= \\
= \\
=\log _{10}\left(\log _{3} 3\right) \\
=\log _{10} 1 \\
=0
\end{array} \text { } 0 \text {. }
\end{aligned}
$$

(6) $y=-10 x^{2}-2 x+1{ }^{-4}$
(a) forabola opus downword

$$
(a=-10<0)
$$

(b) $y-n:$ ent $x=0, y=1$

$$
y-n:(0,1)
$$

$$
\text { (c) } \begin{aligned}
& V\left(x_{v}, y_{v}\right) \\
x_{v} & =\frac{-b}{2 a}=\frac{-(-2)}{2(-10)}=\frac{-1}{10} \\
y_{v} & =-10 \cdot\left(\frac{-1}{10}\right)^{2}-2\left(\frac{-1}{10}\right)+1 \\
& =-10 \cdot \frac{1}{100}+\frac{2}{10}+1 \\
& =\frac{-1}{10}+\frac{2}{10}+1=\frac{1}{10}+1=\frac{11}{10} \\
& \left.Y\left(\frac{-1}{10}\right) \frac{11}{10}\right)
\end{aligned}
$$

(e) Domain:

(7) Range: $y \in\left(-\infty, \frac{11}{10}\right)$

$$
\text { (g) } \frac{10 x^{2}-2 x+1<0}{-1-\sqrt{11})}
$$

$$
\text { (d) } \begin{aligned}
& x-n: \text { ext } y=0 \\
& -10 x^{2}-2 x+1=0 \\
& 10 x^{2}+2 x-1=0 \\
& x=\frac{-b \pm \sqrt{5^{2}-4 a c}}{2 a} \\
& =\frac{-2 \pm \sqrt{2^{2}-4(10)(-1)}}{2(10)} \\
& =\frac{-2 \pm \sqrt{4+40}}{20}=\frac{-2 \pm 2 \sqrt{11}}{20} \\
& =\frac{2(-1 \pm \sqrt{11})}{20}=\frac{-1 \pm \sqrt{11}}{10} \\
& x-n:\left(\frac{-1-\sqrt{11}, 0)}{10}\right) \text { and }\left(\frac{-1+\sqrt{11}}{10}, 0\right) \\
& x-n: \approx(-0.4,0) \text { and }(0.2,0)
\end{aligned}
$$

$$
\begin{aligned}
& \text { g) }-10 x^{2}-2 x+1<0 \quad \text { if } f \\
& \left|x \in\left(-\infty, \frac{-1-\sqrt{11}}{10}\right) \cup\left(\frac{-1+\sqrt{11}}{10}, 0\right)\right|
\end{aligned}
$$

(h)

$$
\begin{aligned}
& y=-10\left(x-\left(\frac{1}{10}\right)\right)^{2}+\frac{11}{10} \\
& y=-10\left(x+\frac{1}{10}\right)^{2}+\frac{11}{10}
\end{aligned}
$$

(7) (a) $f(x)=\frac{-1}{2} x^{2}+3 x-57$

Domain: $x \in \mathbb{R}$
(b) $g(x)=\frac{7^{x}-1 /}{x+12}$

Domain: $x \in \mathbb{R}$
(c) $h(x)=\ln (7-x)$
conditio: $7-x>0$

$$
\rightarrow>x
$$

$$
x<7
$$

1)rmain: $x \in(-\infty>)$
(8) $f(x)=4^{x}$

PART II
(1) $N=500 e^{0.59 t}$
(a) $t=0.5, N=$?
$N=500 e^{0.59(0.5)} \approx 67 /$ bacteria after $\frac{1}{2}$ hour
(b) $t=$? if $N=500,000$

$$
\begin{aligned}
& 500,000=500 e^{0.59 t} \\
& 1000=e^{0.59 t}
\end{aligned}
$$

$\ln 1000=\ln e^{0.59 t}$
$\ln 1000=0.59 t$

$$
t=\frac{\ln 1000}{0.59} \approx 11.7 \text { hous }
$$

Affer aprox. 11.7 houds there will be 500,000 batteria
(2) $C=0.01 x^{2}-2 x+120$
$x=$ \# basket puoducod
C = wot per basket
The equatin is a jarabola that ofeus ugivord, therefore whininum occess at the wotix $V\left(x_{v}, C_{V}\right)$

$$
x_{v}=\frac{-b}{2 a}=\frac{-(-2)}{2(0.01)}=100 \text { baskets }
$$

Thay onoved purdince 100 baskits ni order to suimimise the cost per basket.
$C_{v}=0.01(100)^{2}-2(100)+120=$
$C_{v}=20 \$ /$ basket
The total coot will Le $20 \$ / \mathrm{mant} \cdot 1006 \mathrm{ach} 6=2000 \%$
(3)

$$
\begin{aligned}
& h=-4.9 t^{2}+3.75 t+12.25 \\
& t=\text { time (in ramos) }
\end{aligned}
$$

h - height (in meters)
(a) imbial height when $t=0$

$$
T \vec{n}=12.25 \text { meters }
$$

(b) $t=$? when $h=0$

$$
\begin{aligned}
& \text { 6) } t=9 t^{2}+3.75 t+12.25=0 \\
& 4.9 t^{2}-3.75 t-12.25=0 \\
& 490 t^{2}-375 t-1225=0 \\
& 98 t^{2}-75 t-245=0 \\
& t=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
\end{aligned}
$$

$$
t=\frac{-(-75) \pm \sqrt{(-75)^{2}-4(98)(-245)}}{2(98)}
$$

$$
=\frac{75 \pm \sqrt{101,665}}{196} \approx \frac{75 \pm 319}{196}
$$

$t \approx 2 \mathrm{sec}$ of $t \approx .2$
It will hit the gromed after atront 2 serous.
OR apply tu quadratic
pommels in the Keginming

$$
\begin{gathered}
\quad-4.9 t^{2}+3.75 t+12.25=0 \\
t=\frac{-375 \pm \sqrt{(3.75)^{2}-4(-4.9)(10.25)}}{2(-4.9)}
\end{gathered}
$$

(c) $t=$? when $h=16$

$$
\begin{aligned}
& -4.9 t^{2}+3.75 t+12.25=16 \\
& 4.9 t^{2}-3.75 t+3.75=0
\end{aligned}
$$

$$
t=\frac{3.75 \pm \sqrt{(3.75)^{2}-4(4.9)(3.75)}}{2(4.9)}
$$

$$
t=\frac{3.75 \pm \sqrt{-59}}{2(4.9)} \notin \mathbb{R}
$$

The rocket will never reach a height of 16 meters.
Note that max. height remus at the vertex after $t_{v}=\frac{-3.75}{2(-4.9)} \approx 0.38 \times \mathrm{sec}$
and it is

$$
\begin{aligned}
& \text { and it is } \\
& -4.9(0.38)^{2}+3.75(0.38)+12.25
\end{aligned}
$$

max height ≈ 13 meters.
(4)

600 to fence $\Rightarrow 2 w+l=600$
Area $=$ maxim

$$
\begin{aligned}
& A=a \mathrm{cea} \\
& A=l \cdot w \\
& \left\{\begin{array}{l}
2 w+l=600 \Rightarrow l=600-2 \omega \\
A=l \cdot \omega< \\
A=(600-2 \omega) w \\
A=-2 w^{2}+600 w \\
0 \text { pens down }
\end{array}\right.
\end{aligned}
$$

parabola opens clown
\Rightarrow maximum occurs at the vertex $V\left(w_{v}, A_{v}\right)$

$$
w_{v}=\frac{-b}{2 a}=\frac{-600}{2(-2)}=\frac{-7}{150 f t}
$$

the uidth that mill maximite the area
Then

$$
\begin{aligned}
& l=600 \cdot 2 \omega \\
& l=600-300 \\
& l=300
\end{aligned}
$$

Then $A_{\max }=150 \mathrm{Ht}(800 \mathrm{HH})$
$A_{\text {mox }}=45,000 \mathrm{ff}^{2}$
(5)
(a)

t	$P(t)$
0	100
1	$100(3)=300$
2	$100(3)^{2}=900$
3	$100(3)^{3}=2700$
4	$100(3)^{4}$
t	$100(3)^{t}$

(b) $\rho(t)=100(3)^{t}$
(c)

(d) If $t=13$, then

$$
P(B)=100(3)^{13}=\frac{159432,000}{\text { bacteria }}
$$

after 13 doy 5
(e) $t=$? when $P(t)=37,000$ becteria
$37,000=106(3)^{t}$
$370=3^{t}$
$\ln 370=\ln 3^{t}$
$\ln 370=t \ln 3$

$$
t=\frac{\operatorname{en} 370}{\operatorname{en} 3} \approx 5.4 \text { doys }
$$

(6) $f(x)=574(1.026)^{x}$
$x=$ If years a fter 1974
$f(x)=$ potpulation (in millions)
(a) when $x=0, f(0)=574(1.026)^{\circ}$
$=574$ milline
peopa i 1974
(b)
$f(27)=574(1.026)^{27}$
≈ 1148 millix
≈ 1148 miluin 1574 ,
perper 27 jeors fter 19701
that io in 2001

$$
\text { (c) } \begin{aligned}
& 2028 \text { is } x=2028-1974 \\
& x=54 \\
& f(54)=574(1.026)^{54} \\
& \approx 2295 \text { milline perpe }
\end{aligned}
$$

(d) $t=$? when $f(x)=1000$

$$
1000=574(1.026)^{x}
$$

$$
(1.026)^{x}=\frac{1000}{574}
$$

$\ln (1.026)^{x}=\ln \left(\frac{1000}{574}\right)$

$$
x \ln (1.026)=\ln \frac{1000}{571}
$$

$x \ln (1.026)=\ln \frac{1000}{570}$
$x=\frac{\ln \frac{1000}{574}}{\ln 1.026} \approx 22$ yeors after ${ }^{174}$ in 1996

