SKILLS PORTFOLIO C Polynomials, Polynomial Functions, and Factoring

1. <u>Textbook #73 page 310</u> The common cold is caused by a rhinovirus. After *x* days of invasion by the viral particles, the number of particles in our bodies, f(x), in billions, can be modeled by the polynomial function $f(x) = -0.75x^4 + 3x^3 + 5$. Use the leading coefficient test to determine the graph's end behavior to the right. What does this mean about the number of viral particles in our bodies over time?

- 2. If $f(x) = x^2 3x + 7$, find each of the following and simplify: a) f(a+2) b) f(a+h) - f(a)
- **3**. Simplify: $(y^n + 2)(y^n 2) (y^n 3)^2$
- 4. Factor each polynomials completely:
- a) $2y^{7}(3x-1)^{5}-7y^{6}(3x-1)^{4}$ b) $x^{4n}+x^{2n}+x^{3n}$ c) $3x^{3m}y^{m}-6x^{2m}y^{2m}$ d) $24x^{2}+3xy-27y^{2}$ e) $x^{n}y^{n}+3x^{n}+y^{n}+3$ f) $15x^{3}-25x^{2}+10x$
- 5. Factor by introducing an appropriate substitution.
- a) $2x^4 x^2 3$ b) $2x^6 + 11x^3 + 15$ c) $3(x-2)^2 - 5(x-2) - 2$ c) $a^{2n+2} - a^{n+2} - 6a^2$ c) $3x^{2n} + x^n - 8$

6. Factor completely.

a)
$$x^{2} - 0.5x + 0.06$$

b) $x^{2} - \frac{6}{25} + \frac{1}{5}x$
c) $0.04x^{2} + 0.12x + 0.09$
d) $8x^{4} - \frac{x}{8}$
e) $acx^{2} - bcx + adx - bdx$
f) $x^{5} - x^{3} + 27x^{2} - 27$

7. <u>Textbook # 105 page 345</u> A diver jumps directly upward from a board that is 32 feet high. The function $f(t) = -16t^2 + 16t + 32$ describes the diver's height above the water, f(t), in feet, after *t* seconds. a) Find and interpret f(1). b) Find and interpret f(2).

8. Factor completely:

a) $4a^{3}c^{2}-16ax^{2}y^{2}$ b) $8x^{2}+8y^{2}$ c) $1-81x^{4}$ d) $x^{3}-6x^{2}-x+6$ e) $16x^{2}-40xy+25y^{2}$ f) $x^{2}-8xy+64y^{2}$ g) $x^{2}-6x+9-y^{2}$ h) $25x^{2}-20x+4-81y^{2}$ h) $25x^{3}-8$ h) $x^{3}+(x+y)^{3}$

9. Solve each equation by factoring.

- a) $x^{2} 4x = 45$ (A: -5,-9) b) $x^{2} = 8x$ (A: 0,8) (A: -5,-9) (A: -5,-9) (A: -5,-9) (A: -5, -4, 5) (A: -5,
- c) (x-3)(x+8) = -30 (A: -3, -2) g) $3x^4 48x^2 = 0$ (A: -4, 0, 4)
- h) $x(x+1)^3 42(x+1)^2 = 0$ (A: -7, -1, 6) i) $|x^2 + 2x 36| = 12$ (A: -8, -6, 4, 6)

10. Textbook # 67, 68 page 373

The function
$$f(x) = -\frac{1}{4}x^2 + 3x + 17$$
 models the number of people, f(x),

in millions, receiving food stamps x years after 1990.

a) In which year did 25 million people receive food stamps?

b) How many people received food stamps in 1996?

(A: 1994 and 1998) (A: 26 million)

Polynomial Equations and Their Applications

1. James Bond stands on top of a 240-foot building and throws a film canister upward to a fellow agent in a helicopter 16 feet above the building. The height of the film above the ground *t* seconds later is given by the formula $h = -16^{2} + 32t + 240$ where *h* is in feet.

a) Calculate h(0) and h(1). What is their meaning in this context?

b) How long will it take the film canister to reach the agent in the helicopter?	(A: 1 sec)
c) If the agent misses the canister, when will it pass James Bond on the way down?	(A: 2 sec)
d) How long will it take to hit the ground?	(A: 5 sec)

2. <u>Textbook # 72 page 373</u>. A rectangular parking lot has a length that is 3 yards greater than the width. The area of the parking lot is 180 square yards. Find the length and width. (A: 15 yd ;12 yd)

3. <u>Textbook #78 page 374</u> As part of a landscaping project, you put in a flower bed measuring 20 feet by 30 feet. To finish off the project, you are putting in a uniform border of pine bark around the outside of the rectangular garden. You have enough pine bark to cover 336 square feet. How wide should the border be? (A: 3 ft)

4. Textbook #83 page 374

A tree is supported by a wire anchored in the ground 15 feet from its base. The wire is 4 feet longer than the height that it reaches on the tree. Find the length of the wire. (A: 30 1/8 ft)

5. The height, h, of a baseball t seconds after being hit is given by $h = -16t^2 + 64t + 4$. When will the baseball reach a height of 64? (A: 3/2, 5/2 sec)

6. A car traveling at 50 feet per second (about 34 mi per hour) can stop in 2.5 seconds after applying the brakes hard. The distance the car travels in feet, *t* seconds after applying the brakes is $d = 50t - 10t^2$. How long does it take the car to travel 40ft? (A: 1 second)