TEST \#2 @ 200 points

Write neatly. Show all work. No work, no credit given. Write all responses on separate paper. Clearly label the exercises. No graphing calculator allowed. No phone allowed.

1. Which sequences $\left(a_{n}\right)$ converge and which diverge? Find the limit of each convergent sequence.
a. $\quad a_{n}=\frac{\ln (n+1)}{\sqrt{n}}$
b. $a_{n}=(-1)^{n}\left(1-\frac{1}{n}\right)$
c. $a_{n}=\frac{\sin ^{2} n}{2^{n}}$
2. Which series converges, and which diverges? If a series converges, find its sum.
a. $\quad \sum_{n=1}^{\infty}\left(\frac{1}{\ln (n+2)}-\frac{1}{\ln (n+1)}\right)$
b. $\sum_{n=0}^{\infty}\left(\frac{2}{\sqrt{5}}\right)^{n}$
c. $\sum_{n=1}^{\infty} \frac{6}{(2 n-1)(2 n+1)}$
3. a. Find the values of x for which the series converges. Also, find the sum of the series for those values of x.

$$
\sum_{n=0}^{\infty}\left(-\frac{1}{2}\right)^{n}(x-3)^{n}
$$

b. For what values of x does the series converge?

$$
\sum_{n=0}^{\infty} \frac{x^{n}}{n!}
$$

4. Which of the series converge and which diverge? Name the test you are using .
a. $\sum_{n=1}^{\infty} \ln \frac{1}{3^{n}}$
b. $\sum_{n=1}^{\infty} \frac{n^{2}}{e^{n / 3}}$
c. $\sum_{n=2}^{\infty} \frac{1}{\sqrt{n} \ln n}$
d. $\sum_{n=1}^{\infty} \frac{\ln n}{n^{3}}$
e. $\sum_{n=0}^{\infty} \frac{e^{n}}{e^{n}+n}$
f. $\sum_{n=1}^{\infty}(-1)^{n} \frac{1}{\sqrt{n}}$
g. $\sum_{n=1}^{\infty} \frac{e^{n}}{1+e^{2 n}}$
h. $\sum_{n=1}^{\infty}\left(\frac{2 n+3}{5 n+4}\right)^{n}$
i. $\sum_{n=1}^{\infty} \frac{(n!)^{2}}{(2 n)!}$
j. $\sum_{n=1}^{\infty} \frac{\ln n}{n}$
k. $\sum_{n=1}^{\infty}(-1)^{n} \frac{n^{2}}{n^{3}+1}$
5. $\sum_{n=1}^{\infty} \frac{\cos n}{n^{2}}$
6. a) Approximate the sum of the series $\sum_{n=1}^{\infty} \frac{2}{n^{5}}$ by using the sum of the first 4 terms. Estimate the error involved in this approximation.
b) How many terms are required to ensure that the sum is accurate to within 0.0001 ?

6 a. Let $\sum_{n=1}^{\infty}(-1)^{n+1} \frac{1}{n}$. Is the series convergent? Do not just write an answer.
b. Estimate the magnitude of the error involved in using the sum of the first four terms to approximate the sum of the series $\sum_{n=1}^{\infty}(-1)^{n+1} \frac{1}{n}$.
7. Find the Taylor series generated by $f(x)=\frac{1}{x}$ at $a=2$. For what values of x does the series converge?
8. Find the Maclaurin series for $f(x)=e^{-x}$ using the direct method (the definition of a Maclaurin series). Find its interval of convergence.
9. Using known series, find the first four nonzero terms of the Maclaurin series for each function and the values of x for which the series converge absolutely.
a. $\quad f(x)=e^{\sin x}$
b. $g(x)=e^{x} \sin x$
10. Find the first four terms of the binomial series for $(1-x)^{-\frac{1}{2}}$.
11. Use series to approximate the values of the integral

$$
\int_{0}^{0.1} \sqrt{1+x^{4}} d x \text { with an error less than } 10^{-8}
$$

12. Complete the following definitions, theorems, or properties:
a. If a sequence $\left(a_{n}\right)$ is bounded and monotonic, then the sequence \qquad .
b. If $\lim _{n \rightarrow \infty}\left|a_{n}\right|=0$, then \qquad
c. If a series $\sum a_{n}$ is convergent, then $\left(a_{n}\right)$
d. If $\sum\left|a_{n}\right|$ is convergent, then \qquad
13. What are the power representations of the following functions? What is the radius of convergence of each? Do not prove.
a. $\frac{1}{1-x}=$
b. $\quad e^{x}=$
c. $\sin x=$
d. $\cos x=$

Extra Credit

1. (3 points) Prove the following theorem:

A series of nonnegative terms converges if and only if the sequence of its partial sums is bounded from above.
2. (3 points) First, state the Direct Comparison Theorem, then prove it.
3. (4 points) For which positive integers k is the following series convergent $\sum_{n=1}^{\infty} \frac{(n!)^{2}}{(k n)!}$?

TEST 2- LOMTIONS
(1) (6) $a_{n}=\frac{\ln (n+1)}{\sqrt{n}}, n \geqslant 1$

Asequerce (an) is convergent itf $\lim _{n \rightarrow \infty} a_{n} \in \mathbb{R}$.

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} \frac{\ln (n+1)}{\sqrt{n}}\left(\begin{array}{l}
\infty-\text { coe } \\
\infty \\
n+1 / 1 / \operatorname{lital}
\end{array}\right) \\
& =\lim _{n \rightarrow \infty} \frac{\frac{1}{n+1}}{\frac{1}{2 \sqrt{n}}}=\lim _{n \rightarrow \infty} \frac{2 \sqrt{n}}{n+1} \\
& =\lim _{n \rightarrow \infty} \frac{2}{\sqrt{\sqrt{n}+\frac{1}{\sqrt{n}}}}=\frac{2}{\infty}=0
\end{aligned}
$$

Presefore, (a_{n}) is connergent and $\lim _{n \rightarrow \infty} \frac{\ln (n+1)}{\sqrt{1}}=0$

$$
\begin{aligned}
& \text { (b) } a_{n}=(-1)^{n}\left(1-\frac{1}{n}\right), n \geqslant 1 \\
& \lim _{n \rightarrow \infty} a_{n}=\left\{\begin{array}{cc}
1 & \text { in } n=\text { even } \\
-1 & \text { if } n=\text { odd }
\end{array}\right.
\end{aligned}
$$

(as $\lim _{n \rightarrow \infty}\left(1-\frac{1}{n}\right)=1$)
therefore. $\lim _{n \rightarrow 2} a_{n}$ does noterist so $\left(a_{n}\right)$ is dinergent
(c) $a_{n}=\frac{\sin ^{2} n}{2^{n}}$

$$
\begin{aligned}
& 0 \leq a_{n}=\frac{\sin ^{2} n}{2^{n}} \leq \frac{1}{2^{n}} \\
& \lim _{\rightarrow \infty} 0=\lim _{n \rightarrow \infty} \frac{1}{2^{n}}=0 \text { sanduich } \\
& \Rightarrow \lim _{n \rightarrow \infty} \frac{\sin ^{2} n}{2^{n}}=0
\end{aligned}
$$

so (au) is connergent.

$$
\text { (2) (a) } \sum_{n=1}^{\infty}\left(\frac{1}{\ln (n+2)}-\frac{1}{\ln (n+1)}\right)
$$

A teries $\sum_{n=1}^{\infty} a_{n}$ is convergent iff $\lim _{n \rightarrow \infty}^{n=1} S_{n}=\lim _{n \rightarrow \infty} \sum_{k=1}^{n} a_{k} \in \mathbb{R}$

$$
\lim _{n \rightarrow \infty} S_{n}=\lim _{n \rightarrow \infty}\left(\frac{1}{1 m_{3}}-\frac{1}{m 2}\right)+\left(\frac{1}{\operatorname{m4}}-\frac{1}{m_{3}}\right)
$$

$$
+\cdots+\left(\frac{1}{\ln (n+1)}-\frac{1}{4 n n}\right)+\left(\frac{1}{\operatorname{mn}(n+2)}-\frac{1}{4(n+n+1)}\right.
$$

$$
=\lim _{n \rightarrow \infty}\left(\frac{1}{m(n+2)}-\frac{1}{m 2}\right)=\frac{1}{\infty}-\frac{1}{m 2}
$$

$$
=0-\frac{1}{\ln ^{2}}=-\frac{1}{\ln 2}
$$

Thetcpes, $\sum_{n=1}^{\infty}\left(\frac{1}{m(n+z)}-\frac{1}{\ln (n+1)}\right)$
is couregent an l

$$
\sum_{n=1}^{\infty}\left(\frac{1}{\ln (n+2)}-\frac{1}{\ln (n+1)}\right)=-\frac{1}{\ln 2}
$$

(6) $\sum_{n=0}^{\infty}\left(\frac{2}{\sqrt{5}}\right)^{n}$ is a

Therefore, $\sum_{n=1}^{\infty} \frac{6}{(2 n-1)(2 n+1)}$ is could. Geometric series with fist term $a=\left(\frac{2}{\sqrt{5}}\right)^{0}=1$
oud ratio $r=\frac{2}{\sqrt{5}} \in(-1,1)$
therefore, the series
(3) (a) $\sum_{n=0}^{\infty}\left(-\frac{1}{2}\right)^{n}(x-3)^{n}=\sum_{n=0}^{\infty}\left(-\frac{x-3}{2}\right)^{n}$ convergent and its sum is $\frac{a}{1-r}=\frac{1}{1-\frac{2}{\sqrt{5}}}=\frac{\sqrt{5}}{\sqrt{5}-2}$

$$
\sum_{n=0}^{\infty}\left(\frac{2}{\sqrt{5}}\right)^{n}=\frac{\sqrt{5}}{\sqrt{5}-2}
$$

fist term $a=1$ and ratio $r=-\frac{x-3}{2}$
The series converges when

$$
\begin{aligned}
& \text { (C) } \sum_{n=1}^{\infty} \frac{6}{(2 n-1)(2 n+1)} \\
& \frac{6}{(2 n-1)(2 n+1)}=\frac{A}{2 n-1}+\frac{B}{2 n+1} \\
& 6=A(2 n+1)+B(2 n-1) \\
& 6==(2 A+2 B) n+(A-B) \\
& \left\{\begin{array}{l}
2 A+2 B=0 \\
A-B=6 \Rightarrow\left\{\begin{array}{l}
A+B=0 \\
A-B=6
\end{array} \Rightarrow\right. \\
2 A=6 \Rightarrow A=3 \text { and } B=-3
\end{array}\right. \\
& \text { So } \sum_{n=1}^{\infty} \frac{6}{(2 n-1)(2 n+1)}=\sum_{n=1}^{\infty}\left(\frac{3}{2 n-1}-\frac{3}{2 n+1}\right)
\end{aligned}
$$

well find s_{n} and $\lim _{n \rightarrow \infty} s_{n}$

$$
\begin{aligned}
s_{n}= & \sum_{k=1}^{n}\left(\frac{3}{2 k-1}-\frac{3}{2 k+1}\right)=3 \sum_{k=1}^{n}\left(\frac{1}{2 k-1}-\frac{1}{2 k+1}\right) \\
= & 3\left(\left(\frac{1}{1}-\frac{1}{3}\right)+\left(\frac{1}{3}-\frac{1}{8}\right)+\cdots\right. \\
& \left.+\cdots+\left(\frac{1}{2(n-1)-1}-\frac{1}{2(n-k+1}\right)+\left(\frac{1}{2 n-1}-\frac{1}{2 n+1)}\right)\right] \\
= & 3\left(1-\frac{1}{2 n+1}\right), \text { lin } s_{n}=3(1-0)=3
\end{aligned}
$$

The tories diverges when $|r| \geqslant 1$, when $r \leq 1$ on $r \geqslant 5$ Presefor, $\sum_{n=0}^{\infty}\left(-\frac{1}{2}\right)^{n}(x-3)^{n}$ conneges when $x \in(1,5)$ oud its sum ir

$$
\begin{aligned}
& \frac{a}{1-r}=\frac{1}{1-\left(-\frac{x-3}{2}\right)}=\frac{2}{x-1} \\
& \left|\sum_{n=0}^{\infty}\left(-\frac{1}{2}\right)^{n}(x-3)^{2}=\frac{2}{x-1}, \forall x \in(1,5)\right|
\end{aligned}
$$

(6) $\sum_{n=0}^{\infty} \frac{x^{n}}{n!}$
arell apply the Ratio Test to

$$
\begin{aligned}
& \sum_{n=0}^{\infty}\left|\frac{x^{n}}{n!}\right| \text {; let } a_{n}=\frac{x^{n}}{n!} \\
& \lim _{n \rightarrow \infty}\left|\frac{a_{n}+1}{a_{n}}\right|=\lim _{n \rightarrow \infty}\left|\frac{x^{n+1}}{(n+1)!} \cdot \frac{n!}{x^{n}}\right| \\
& =\lim _{n \rightarrow \infty} \frac{|x|}{(n+1)}=|x| \lim _{n \rightarrow \infty} \frac{1}{n+1} \\
& =|x| \cdot 0=0, \quad \forall x \in \mathbb{R}
\end{aligned}
$$

$$
a_{n}>0, \forall n \geqslant 2
$$

$\sum^{\infty} \frac{x^{n}}{n!}$ is conregent $\forall x \in \mathbb{R}$
(4) (a) $\sum_{n=1}^{\infty} \ln \left(\frac{1}{3^{n}}\right)$

Note tnat $\lim _{n \rightarrow \infty}\left(\ln \frac{1}{3^{n}}\right)=$

$$
\begin{aligned}
& =\lim _{n \rightarrow \infty}\left(\ln 1-\ln 3^{n}\right) \\
& =\lim _{n \rightarrow \infty}(0-n \ln 3)=-\infty
\end{aligned}
$$

By the $n^{\text {th }}$-teme test for divegaen, $\sum_{n=1}^{\infty} \ln \left(\frac{1}{3^{n}}\right)$ is divejent, Pherfore, , an ond \sum bun
(b)

$$
\sum_{n=1}^{\infty} \frac{n^{2}}{e^{n / 3}} \text {; let } a_{n}=\frac{n^{2}}{e^{n / 3}}
$$ $a_{n}>0, \forall n \geqslant 1$

melll apply the Ratio Test

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}=\lim _{n \rightarrow \infty}\left[\frac{(n+1)^{2}}{e^{\frac{n+1}{3}}} \cdot \frac{e^{\frac{4}{3}}}{n^{2}}\right] \\
& =\lim _{n \rightarrow \infty} \frac{1}{e^{1 / 3}} \cdot \frac{(n+1)^{2}}{n^{2}}=\frac{1}{e^{1 / 3}} \cdot 1<1 \\
& \text { to } \sum_{n=1}^{\infty} \frac{n^{2}}{e^{n / 3}} \text { is converent }
\end{aligned}
$$

(c) $\sum_{n=2}^{\infty} \frac{1}{\sqrt{n} \ln n} ;$ let $a_{n}=\frac{1}{\sqrt{n} \ln n}, n \geq 2$
let $b_{n}=\frac{1}{n}, b_{n}>0$ wiAh $\sum_{n=2}^{\infty} b_{n}=\sum_{n=2}^{\infty} \frac{1}{n}$ divegent
(p-terier cuixn $p=1$)
me'll apply the Cimit Compoin

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \frac{b_{n}}{a_{n}}=\lim _{n \rightarrow \infty} \frac{\frac{1}{n}}{\frac{1}{\sqrt{n} \ln n}} \\
&=\lim _{n \rightarrow \infty} \frac{\ln n}{\sqrt{n}}\left(\frac{\infty}{\infty} \text {-cos; ute } \text {, Hopital) }\right) \\
&=\lim _{n \rightarrow \infty} \frac{\frac{1}{n}}{\frac{1}{2 \sqrt{n}}}=\lim _{n \rightarrow \infty} \frac{2}{\sqrt{n}}=0
\end{aligned}
$$ botx convege or bohe diveze; sut \sum bn it div. to $\sum_{n=2}^{\infty} \frac{1}{\sqrt{n} \ln n}$ is diverjent

(d) $\sum_{n=1}^{\infty} \frac{\ln n}{n^{3}}$
$\frac{\ln n}{n^{3}} \geqslant 0 \quad \forall n \geqslant 1$
w'll use the Lirect comporim Test

$$
0 \leq \frac{\ln n}{n^{3}}<\frac{n}{n^{3}}=\frac{1}{n^{2}}, \forall n \geqslant 1
$$

with $\sum_{n=1}^{\infty} \frac{1}{n^{2}}$ convegent (as a p-teries with $p=2$)
Pherefore $\sum_{n=1}^{\infty} \frac{\ln n}{n^{3}}$ is convergert
(e) $\sum_{n=0}^{\infty} \frac{e^{n}}{e^{n+n}}$

Note trat $\lim _{n \rightarrow \infty} \frac{e^{n}}{e^{n}+n}=\left(\begin{array}{l}\frac{\infty}{\infty}-\operatorname{cose} \\ 4+1\end{array}\right.$

$$
\begin{aligned}
& =\lim _{n \rightarrow \infty} \frac{e^{n}}{e^{n}+1}\left(\frac{\infty}{\infty} \cdot \cos \text { I'topital }\right) \\
& =\lim _{n \rightarrow \infty} \frac{e^{n}}{e^{n}}=\lim _{n \rightarrow \infty} 1=1 \neq 0
\end{aligned}
$$

Sy the $n^{\text {th }}$ term test por direygas,
$\sum_{n=0}^{\infty} \frac{e^{n}}{e^{n}+n}$ is diverjent
(7) $\sum_{n=1}^{\infty}(-1)^{n} \frac{1}{\sqrt{n}}$ is an alternoting teries
let $a_{n}=\frac{1}{\sqrt{n}}$
. $a_{n}>0 \quad \forall n \geqslant 1$

- $\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} \frac{1}{\sqrt{n}}=0$

$$
\text { - } a_{n}=\frac{1}{\sqrt{n}} \geqslant \frac{1}{\sqrt{n+1}}=a_{n+1}
$$

$$
\text { so } a_{n} \geqslant a_{n+1} \forall n \geqslant 1
$$

- By The Aeterwating teries Tat $\Rightarrow \sum_{n=1}^{\infty}(-1)^{n} \frac{1}{\sqrt{n}}$ is convergat
(g) $\sum_{n=1}^{\infty} \frac{e^{n}}{1+e^{2 n}}$; let $a_{n}=\frac{e^{n}}{1+e^{2 n}}$

$$
a_{n}>0 \quad \forall n \geqslant 1
$$

w'll apply the Ratio Ist

$$
\left.\begin{array}{l}
\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}=\lim _{n \rightarrow \infty} \frac{e^{n+1}}{1+e^{2 n n}} \cdot \frac{1+e^{2 n}}{e^{n}} \\
=\lim _{n \rightarrow \infty} \frac{e\left(1+e^{2 n}\right)}{1+e^{2 n+2}}\left(\frac{\infty}{\infty}-\operatorname{cose}\right. \\
\left.u+1 / 14 q_{n} i+1\right)
\end{array}\right)
$$

Prenelore, $\sum_{n=1}^{\infty} \frac{e^{n}}{1+e^{2 n}}$ is conv.
(h) $\sum_{n=1}^{\infty}\left(\frac{2 n+3}{5 n+4}\right)^{n} ; 1 e+a_{n}=\left(\frac{2 n+3}{5 n+4}\right)^{n}$
$a_{n}>0, \nmid n \geqslant 1$
well apply the Root test

$$
\lim _{n \rightarrow \infty} \sqrt[n]{a_{n}}=\lim _{n \rightarrow \infty} \frac{2 n+3}{5 n+4}=\frac{2}{5}<1
$$

therefor, $\sum_{n=1}^{\infty}\left(\frac{2 n+3}{5 n+4}\right)^{n}$ is conv.
(k) $\sum_{n=1}^{\infty}(-1)^{n} \frac{n^{2}}{n^{3}+1}$ is an altemating tories
(1) $\sum_{n=1}^{\infty} \frac{(n!)^{2}}{(2 n)!}$, let $a_{n}=\frac{(n!)^{2}}{(2 n)!}$ let $a_{n}=\frac{n^{2}}{n^{3}+1}, n \geqslant 1$ $a_{n}>0, \forall n \geqslant 1$
well apply The Rate io Test:

$$
\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}=\lim _{n \rightarrow \infty} \frac{((n+1)!)^{2}}{(2 n+2)!} \cdot \frac{(2 n)!}{\left(n^{1}\right)^{2}}
$$

$$
=\lim _{n \rightarrow \infty} \frac{(n+1)^{2}}{(2 n+1)(2 n+2)}=\frac{1}{4}<1
$$

$+1 \sum_{n=1}^{\infty} \frac{(n!)^{2}}{(2 n)!}$ is convergent
(j) $\sum_{n=1}^{\infty} \frac{\ln n}{n}$ j let $a_{n}=\frac{\ln n}{n}$ $a_{n}>0, \quad \forall n \geqslant 2$
$\frac{\ln n}{n}>\frac{1}{n}, \forall n \geqslant 2$
ond $\sum_{n=2}^{\infty} \frac{1}{n}$ is divergent (p-teries wion $p=1$)
By Direct Comperim Test, $\sum_{n=2}^{\infty} \frac{\ln n}{n}$ is divejust,
trerepe
$\sum_{n=1}^{\infty} \frac{\ln n}{2}$ is divegurt

- $\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} \frac{n^{2}}{3+1}=0$
- prove $a_{n} \geqslant a_{n+1}$
let $f(x)=\frac{x^{2}}{x^{3}+1}>0, * x \geqslant 1$

$$
f(n)=a_{n}, \forall n \geqslant 1, n \in x \mid
$$

$$
f^{\prime}(x)=\frac{2 x\left(x^{3}+1\right)-3 x^{2}\left(x^{2}\right)}{\left(x^{3}+1\right)^{2}}=\frac{2 x-x^{4}}{\left(x^{3}+1\right)^{2}}
$$

$$
f^{\prime}(x)=\frac{x\left(2-x^{3}\right)}{\left(x^{3}+1\right)^{2}}
$$

$f^{\prime}(x)<0$ iff $2-x^{3}<0$ iff $x^{3}>2$
iff $x>\sqrt[3]{2} \approx 1.2$
so $f(x)$ is decreasing $\forall x \geqslant 2$ to $a_{n} \geqslant a_{n+1} \quad \forall n \geqslant 2$
by the Altermatiug
Leries Tht \Rightarrow
$\sum_{n=1}^{\infty}(-1)^{n} \frac{n^{2}}{n^{3}+1}$ is convergent
(l) $\sum_{n=1}^{\infty} \frac{\cos n}{n^{2}}$ $0 \leqslant\left|\frac{\cos n}{n^{2}}\right| \leq \frac{1}{n^{2}}, \forall n>11$ oud $\sum_{n=1}^{\infty} \frac{1}{n^{2}}$ is convefuet (p-teries cuith $\rho=2>1$)
by Wirelt comporion Tet \quad. . \mid frror $\leqslant 0.00195$ $\sum_{n=1}^{\infty} \left\lvert\, \frac{\cos n}{n^{2}} /\right.$ is conrejait, tresefore $\sum_{n=1}^{\infty} \frac{\cos n}{n^{2}}$ is conv.
(5) (a) $\sum_{n=1}^{\infty} \frac{2}{n^{5}}$ is conversent $(p$-teries mine $p=5>1$) so there is $\lim _{n \rightarrow \infty} s_{n}=\lim _{n \rightarrow \infty} \sum_{k=1}^{n} \frac{2}{k^{5}}=s$ and $\sum_{n=1}^{\infty} \frac{2}{n^{5}}=5$
Tresefore, $\sum_{n=1}^{\infty} \frac{2}{n^{r}} \approx S_{H}$

$$
\left|\sum_{n=1}^{\infty} \frac{2}{n^{5}} \approx \frac{2}{1}+\frac{2}{2^{5}}+\frac{2}{3^{5}}+\frac{2}{4^{5}} \approx 2.07\right|
$$

By the Recuainder Ertimate for the inte gral Test,

$$
R_{n} \leq \int_{n}^{\infty} f(x) d x
$$

(Note heat $f(x)=\frac{2}{x^{5}}>0 \forall x \geqslant$) and $f(x)$ is decreasing $\forall x \geqslant 1)$ so $\begin{aligned} R_{4} \leq \int_{4}^{\infty} \frac{2}{x^{5}} d x & =\lim _{t \rightarrow \infty} \int_{4}^{t} 2 x^{-5} d x \\ & =\end{aligned}$
(b) $n=$? such that $e_{n} \leq 0.0001$

$$
\begin{aligned}
& \text { (b) } n=\int_{n}^{\infty} \frac{2}{x^{5}} d x \leq 0.0001 \\
& \left.\lim _{t \rightarrow \infty} \int_{n}^{t} 2 x^{-5} d x=\lim _{t \rightarrow \infty} \frac{2 x^{-4}}{-4}\right]_{n}^{t} \\
& =\frac{-1}{2} \lim _{t \rightarrow \infty}\left(\frac{1}{t^{4}}-\frac{1}{n^{4}}\right)=\frac{-1}{2}\left(\frac{-1}{n^{4}}\right) \\
& =\frac{1}{2 n^{4}} \\
& \text { so } \frac{1}{2 n^{4}} \leqslant 0.0001 \\
& 2 n^{4} \geqslant 10^{4} \\
& n^{4} \geqslant \frac{10^{4}}{2} \text {, so } n \geqslant \sqrt{\frac{10^{4}}{2}} \approx 70.7
\end{aligned}
$$

so we weed $n=71$
(6) (a) $\sum_{n=1}^{\infty}(-1)^{n+1} \frac{1}{n}$ is an

$$
\operatorname{let}\left(a_{n}=\frac{1}{n}, 0,+n \geqslant 1\right.
$$

$$
\begin{aligned}
& =\sum_{n=0}^{\infty} \frac{(-1)^{n}}{2^{n+1}}(x-2)^{n} \\
& =\sum_{n=0}^{\infty} \frac{1}{2}\left(-\frac{x-2}{2}\right)^{n}
\end{aligned}
$$

Dhis is a geometric teries of ratio $r=-\frac{x-2}{2}$
It is convergent when

$$
|r|=\left|-\frac{x-2}{2}\right|=\frac{|x-2|}{2}<1
$$

its $|x-2|<2$

$$
\begin{gathered}
-2<x-2<2 \\
0<x<4
\end{gathered}
$$

ond it is dinegent nhen $|r|>1$, when $x \leq 0$ on $x \geqslant 4$ so $\sum_{n=0}^{\infty} \frac{(-1)^{n}}{2^{n+1}}(x-2)^{n}$ is conv.
(7) $f(x)=\frac{1}{x}, a=2$

The Taylor xires is

$$
\begin{aligned}
& \sum_{n=0}^{\infty} \frac{f^{(n)}(2)}{n!}(x-2)^{n} \\
& f(x)=\frac{1}{x} \quad f(2)=-\frac{1}{2} \\
& f^{\prime}(x)=-x^{-2} \quad f^{\prime}(2)=-2^{-2} \\
& f^{\prime \prime}(x)=(-1)(-2) x^{-3} \quad f^{\prime \prime}(2)=2!2^{-3} \\
& f^{\prime \prime \prime}(x)=(-1)(-2)(-3) x^{-4} f^{\prime \prime \prime}(2)=-3!2^{-4} \\
& f_{0} f^{(n)}(x)=(-1)^{n} x^{-(n+1)} \\
& f^{(n)}(2)=(-1)^{n} \frac{n!}{2^{n+1}} \\
& \sum_{n=0}^{\infty}(-1)^{n} \frac{n!}{n!2^{n+1}}(x-2)^{n}=
\end{aligned}
$$

(8) $f(x)=e^{-x}$,

The Maclanin series is

$$
\begin{aligned}
& \sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^{n} \\
& f^{\prime}(x)=-e^{-x} \quad f^{\prime}(0)=-1 \\
& f^{\prime \prime}(x)=e^{-x} \quad f^{\prime \prime}(0)=1 \\
& \vdots(n)(x)=(-1)^{n} \quad \infty \\
& f^{\infty}(x) \\
& \sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^{n}=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{n!} x^{n}
\end{aligned}
$$

Apply The Ratio Test to $\sum_{n=0}^{\infty}\left|a_{n}\right|, a_{n}=\frac{(-1)^{n} x^{n}}{n!}$

$$
\begin{aligned}
& \lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\lim _{n \rightarrow \infty}\left|\frac{-8-}{(n+1)!} \cdot \frac{n!}{x^{n}}\right| \\
& =\lim _{n \rightarrow \infty} \frac{|x|}{n+1}=0, \quad \forall x \in \mathbb{1}
\end{aligned}
$$ do $e^{x} \sin x=x+x^{2}+\frac{1}{3} x^{3}-\frac{1}{30} x^{5}+\cdots$ $\forall x$

$$
\text { so } \sum_{n=0}^{\infty} \frac{(-1)^{n}}{n!} x^{n} \text { converges } \forall x \in \mathbb{1}
$$

$$
\begin{aligned}
& \text { (9) (a) } f(x)=e^{\sin x} \\
& \sin x=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{3}}{7!}+\cdots, \forall x \\
& e^{x}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\cdots, \forall x
\end{aligned}
$$

$$
\text { (10) }(1-x)^{-\frac{1}{2}}=\left(1+(-x)^{-\frac{1}{2}}\right)
$$

$$
\begin{aligned}
& =1+\sum_{n=1}^{\infty}\binom{-\frac{1}{2}}{n}(-x)^{n}, \forall|x|<1 \\
= & 1+\binom{-\frac{1}{2}}{1}(-x)+\binom{-\frac{1}{2}}{2}(-x)^{2}+ \\
& +\binom{-\frac{1}{2}}{3}(-x)^{3}+\binom{-\frac{1}{2}}{4}(-x)^{4}+\cdots
\end{aligned}
$$

$$
=1+\left(-\frac{1}{2}\right)(-x)+\frac{\left(-\frac{1}{2}\right)\left(-\frac{3}{2}\right)}{2} x^{2}+
$$

$$
+\frac{\left(-\frac{1}{2}\right)\left(-\frac{3}{2}\right)\left(-\frac{5}{2}\right)}{1 \cdot 2 \cdot 3}\left(-x^{3}\right)+
$$

Thea,
$e^{\sin x}=1+\sin x+\frac{(\sin x)^{2}}{2!}+\frac{(\sin x)^{3}}{3!}+\cdots, \forall x$

$$
+\frac{\left(-\frac{1}{2}\right)\left(-\frac{3}{2}\right)\left(-\frac{5}{2}\right)\left(-\frac{2}{2}\right)}{1 \cdot 2 \cdot 3 \cdot 4} x^{4}+\cdots
$$

$$
=1+\left(x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}+\cdots\right)+
$$

$$
=1+\frac{1}{2} x+\frac{3}{8} x^{2}+\frac{5}{16} x^{3}+\cdots
$$

$$
+\frac{1}{2} \cdot\left(x-\frac{x^{3}}{3!}+\frac{x^{5}}{71}-\cdots\right)^{2}+\frac{1}{6}\left(x-\frac{x^{3}}{3!}+\cdot\right)_{\forall x}^{3}
$$

$$
\left.(1-x)^{-\frac{1}{2}}=1+\frac{1}{2} x+\frac{3}{8} x^{2}+\frac{5}{16} x^{3}+\cdots \right\rvert\,
$$

$$
=1+x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}+\cdots+\frac{1}{2}\left(x^{2}-\frac{2}{6} x^{4}+\cdots\right)
$$

$\forall|x|<1$
$+\frac{1}{6} x^{3}+$

$$
=1+x+\frac{1}{2} x^{2}-\frac{1}{6} x^{4}+\cdots
$$

(6) $e^{x} \sin x=$

$$
\begin{aligned}
& =\left(1+x+\frac{x^{2}}{2}+\frac{x^{3}}{6}+\frac{x^{4}}{24}+\cdots\right)\left(x-\frac{x^{3}}{6}+\frac{x^{5}}{120} \cdots\right) \\
& =x-\frac{x^{3}}{6}+\frac{x^{5}}{120}+\cdots \\
& +x^{2}-\frac{x^{4}}{6}+\cdots \\
& +\frac{x^{3}}{2}-\frac{x^{5}}{12}+\cdots \\
& +\frac{x^{4}}{6}+\cdots=x+x^{2}+\left(\frac{1}{2}-\frac{1}{6}\right) x^{3}+ \\
& +\frac{x^{5}}{24}+\left(\frac{1}{120}-\frac{1}{12}+\frac{1}{24}\right) x^{5}
\end{aligned}
$$

$$
\begin{aligned}
& =1+\frac{\frac{1}{2}}{1} x^{4}+\frac{\left(\frac{1}{2}\right)\left(-\frac{1}{2}\right)}{2}\left(x^{4}\right)^{2}+ \\
& +\frac{\left(\frac{1}{2}\right)\left(-\frac{1}{2}\right)\left(-\frac{3}{2}\right)}{1 \cdot 2 \cdot 3}\left(x^{4}\right)^{3}+ \\
& +\frac{\left(\frac{1}{2}\right)\left(-\frac{1}{2}\right)\left(-\frac{3}{2}\right)\left(-\frac{5}{2}\right)}{1 \cdot 2 \cdot 3 \cdot 4}\left(x^{4}\right)^{4}+ \\
& =1+\frac{x^{4}}{2}-\frac{x^{8}}{8}+\frac{x^{12}}{16}-\frac{5 x^{16}}{128}+\cdots
\end{aligned}
$$

$$
\begin{aligned}
& \text { (11) } \sqrt{1+x^{4}}=\left(1+x^{4}\right)^{\frac{1}{2}}= \\
& =1+\sum_{n=1}^{\infty}\binom{\frac{1}{2}}{n}\left(x^{4}\right)^{n}, \forall|x|<1
\end{aligned}
$$

Dren,

$$
\begin{aligned}
& \int_{0}^{0.1} \sqrt{1+x^{4}} d x= \\
& =\int_{0}^{0.1}\left(1+\frac{x^{4}}{2}-\frac{x^{8}}{8}+\frac{x^{12}}{16}-\frac{5 x^{16}}{128}+\cdots\right) d x \\
& =\left[x+\frac{x^{5}}{2.5}-\frac{x^{9}}{8.9}+\frac{x^{13}}{16.13} \cdots\right]_{0}^{0.1} \\
& =0.1+\frac{(0.1)^{5}}{10}-\frac{(0.1)^{9}}{72}+\frac{(0.1)^{13}}{16.13} \cdots \\
& \approx 0.1+\frac{(0.1)^{5}}{10}=0.100001
\end{aligned}
$$

whete /error/ $\leq \frac{(0.1)^{9}}{72} \approx 1.39 \times 10^{-11}$
(13)
(a)

$$
\begin{aligned}
& \text { (13) } \frac{1}{1-x}=1+x+x^{2}+\cdots=\sum_{n=0}^{\infty} x^{n} \\
& \forall|x|<1+\text { so } R=1 \\
& \text { (b) } e^{x}=1+\frac{x}{1!}+\frac{x^{2}}{2!}+\cdots=\sum_{n=0}^{\infty} \frac{x^{n}}{n!} \\
& \forall x, \text { so } R=\infty
\end{aligned}
$$

(c)

$$
\begin{aligned}
\sin x= & x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!} \cdots \\
= & \sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n+1}}{(2 n+1)!} \\
& \forall x, \text { so } R=\infty
\end{aligned}
$$

(12) (a) If(au) is bounded and monotomic, Dhen the sequence (cm) is converent.
(a)

$$
\begin{aligned}
\cos x & =1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!} \cdots \\
& =\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n}}{(2 n)!}, \forall x=\infty
\end{aligned}
$$

(b)

$$
\begin{aligned}
& \text { if } \lim _{n \rightarrow \infty}\left|a_{n}\right|=0 \text {, Theu } \\
& \lim _{n \rightarrow \infty} a_{n}=0
\end{aligned}
$$

(c) Iy $\sum a_{u}$ is onvergut,
theu $\left(a_{n}\right)$ hos limit teN,
that is $\lim _{u \rightarrow \infty} a_{u}=0$
(d) If \sum lanlis couregent,
then] Ear is overojeut

EXTRA CREDIT
(1) and (2) - see notes or text600/c po provp of the Preorem
(3) $\sum_{n=1}^{\infty} \frac{(n!)^{2}}{\left(k_{n}\right)!}$; let $a_{n}=\frac{(n!)^{2}}{\left(k_{n}\right)!}$

$$
\lim _{n \rightarrow \infty}\left|\frac{a_{n}+1}{a_{n}}\right|=\lim _{n \rightarrow \infty}\left|\frac{(n+1)!^{2}}{(k(n+1))!} \cdot \frac{\left(k_{n}\right)!}{(n!)^{2}}\right|=\lim _{n \rightarrow \infty} \frac{(n+1)^{2}}{\left(k_{n}+1\right) \ldots(k n+k)}
$$

Note trat the denominabor has t factors.
H(k=1), then $\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\lim _{n \rightarrow \infty} \frac{(n+1)^{2}}{n+1}=\infty$, to tre Len's dimets
$y(k=2)$, Phen $\lim _{n \rightarrow \infty}\left|\frac{a_{n}+1}{a_{n}}\right|=\lim _{n \rightarrow \infty} \frac{(n+1)^{2}}{(2 n+1)(2 n+2)}=\frac{1}{4}$, slo the
Len's couverges
$y(k>2)$, then the hifnest promer of n in tre denonimator is greater tean 2, to the limit is o, to the teries ofureges
pretpre, wheris sumers nhu $k \geqslant 2$

