TEST\#1@200 points

Write neatly. Show all work. No work, no credit given. Write all responses on separate paper. Clearly label the exercises. No graphing calculator allowed. No phone allowed.

1. A region is bounded by $y=x, y=1$, and $x=0$.
a) Find the volume of the solid generated by revolving the region about $x=-1$.
b) If we fill the vase formed in part (a) with water at a constant rate of 2 cubic units per second, how fast will the water level in the bowl be rising when the water is 0.3 units deep?
2. Find the volume of the solid generated by revolving the region enclosed by the graphs of $y=e^{\frac{x}{2}}, y=1$, and $x=\ln 3$ about the x-axis.
3. A tank has the shape of an inverted circular cone with height 10 m and base radius 4 m . It is filled with water to a height of 8 m . Find the work required to empty the tank by pumping all the water 2 m above the top of the tank. (The weight - density of water is $9800 \mathrm{~N} / \mathrm{m}^{3}$).
4. The vertical triangular plate shown here is the end plate of a trough full of water. Find the fluid force against the plate . The weight-density of freshwater is $64 \mathrm{lb} /$ cubic feet.

5. Prove the following formulas:
a) $\cosh 2 x=\cosh ^{2} x+\sinh ^{2} x$
b) $\frac{d}{d x}(\tanh x)=\operatorname{sech}^{2} x$
6. Is the area under the curve $y=\frac{\ln x}{x^{2}}$ from $x=1$ to $x=\infty$ finite? If so, what is its value?

7. If f^{\prime} is continuous on $[a, b]$, find the length of the curve $y=f(x)$ from the point $(a, f(a))$ to the point $(b, f(b))$.
8. Solve the initial value problem for x in terms of t :

$$
\left(t^{2}-3 t+2\right) \frac{d x}{d t}=1, t>2, x(3)=0
$$

9. Find the following integrals:
a) $\int_{0}^{\sqrt{3} / 2} \frac{4 x^{2} d x}{\left(1-x^{2}\right)^{3 / 2}}$
b) $\int \sin ^{4} \theta d \theta$
c) $\int_{-\infty}^{\infty} 2 x e^{-x^{2}} d x$
d) $\int_{1}^{3} \frac{2}{\sqrt{x-1}} d x$
e) $\int_{0}^{1} \ln x d x$
f) $\int_{0}^{\pi / 2} \cos ^{2} y d y$
g) $\int \frac{x^{3}}{\sqrt{x^{2}+4}} d x$
h) $\int \frac{d x}{x\left(x^{2}+1\right)^{2}}$
i) $\int_{\frac{5 \pi}{6}}^{\pi} \frac{\cos ^{4} x}{\sqrt{1-\sin x}} d x$
j) $\int \sec ^{3} \theta d \theta$
k) $\int_{-\infty}^{0} x e^{x} d x$
1) $\int \sin 2 t \cos 4 t d t$
m) $\int \frac{d x}{x^{2}+x+3}$
n) $\int \sin ^{-1} x d x$
10. Use integration, the Direct Comparison Test, or the Limit Comparison Test to test the integrals for convergence:
a) $\int_{0}^{2} \frac{d x}{1-x^{2}}$
b) $\int_{1}^{\infty} \frac{d x}{x^{5}+2}$
c) $\int_{0}^{\infty} \sin x d x$

EXTRA CREDIT

Exercise\#1 @ 1 point Prove that if f is a continuous function, then $\int_{0}^{a} f(x)=\int_{0}^{a} f(a-x) d x$.

Exercise \#2 @ $\mathbf{4}$ points Approximate the definite integral of a continuous function on the interval $[a, b]$ using parabolas; that is, prove Simpson's Rule used to approximate $\int_{a}^{b} f(x) d x$.

Exercise \#3 @ 3 points Find $\int \frac{x^{2}+1}{x \sqrt{x^{4}+1}} d x, x>0$.

Exercise \#4 @ 4 points
Find the value of the constant C for which the integral $\int_{0}^{\infty}\left(\frac{x}{x^{2}+1}-\frac{C}{3 x+1}\right) d x$ converges. Evaluate the integral for this value of C.

Exercise \#5 @ 3 points Water in an open bowl evaporates at a rate proportional to the area of the surface of the water. (This means that the rate of decrease of the volume is proportional to the area of the surface.) Show that the depth of the water decreases at a constant rate, regardless of the shape of the bowl.
(1) $y=x, y=1, \quad x=0$
(a)

Shell metwol - vertical okells from $x=0$ to $x=1$ with

$$
\begin{aligned}
& r=1+x, \\
& h=1-y=1-x \\
V= & \int_{0}^{1} 2 \pi(r)(h) d x \\
V= & 2 \pi \int_{0}^{1}(1+x)(1-x) d x \\
= & 2 \pi \int_{0}^{1}\left(1-x^{2}\right) d x \\
= & 2 \pi\left[x-\frac{x^{3}}{3}\right]_{0}^{1}=2 y\left(1-\frac{1}{3}\right)=\frac{4 \pi}{3} \\
& \left\lvert\,=\frac{4 \pi}{3}\right. \text { cubic u cuib }
\end{aligned}
$$

(b) let $h=$ heisnt of water mi the bowl.
$V=$ volume of water

het $h=$ neisht of vater
$V=001$ of water
use horifm tol slass, t to yams
at y fro $y=0$ to $y=n$

$$
\begin{aligned}
& V=\int_{0}^{n} A(y) d y \\
& A(y)=\text { washer } \\
& =\pi\left(R^{2}-r^{2}\right), R=1+y \\
& r=1 \\
& V=\int_{0}^{h} \pi\left[(1+y)^{2}-1^{2}\right] d y \\
& \frac{d V}{d t}=\frac{d V}{d h} \cdot \frac{4 h}{d t} \\
& \frac{d V}{d t}=\pi\left[(1+h)^{2}-1\right) \frac{d h}{d t} \\
& \begin{array}{l}
\frac{d V}{d t}=2 \text { usicumits/xc } \\
h=0.3 \text { umin } \\
\text { And } \frac{d h}{d t} \\
2=\pi\left(2(0.3)+(0.3)^{2}\right) \cdot \frac{d h}{d t} \\
\frac{d h}{d t}=\frac{2}{0.691 \pi} \approx 0.92 \text { umit }
\end{array}
\end{aligned}
$$

(2) $y=e^{x / 2}, y=1, x=\ln 3$

Use vertical planes for $x=0$ to he 3

$$
V=\int_{0}^{\ln 3} A(x) d x
$$

where $A(x)=$ washer

$$
\begin{aligned}
& \text { where } A(x)=\text { washer } \\
& A(x)=\pi\left(e^{2}-r^{2}\right), \quad R=y=e^{x / 2}
\end{aligned}
$$

$$
r=1
$$

$$
\begin{aligned}
V= & \int_{0}^{\ln 3} \pi\left(e^{x}-1\right) d x \\
& =\pi\left(e^{x}-x\right)_{0}^{\ln 3}=\pi(3-\ln 3-1) \\
& V=(2-\ln 3) \pi \text { unit }^{3}
\end{aligned}
$$

(3)

"Cut" the eigmia vito n "lagers"
Lot W_{k} = work done to primp mam layer up

Then, $w \approx \sum_{k=1}^{n} W_{k}$

$$
\begin{aligned}
& W_{k}=F_{k} \cdot d_{k} \\
& \left\{\begin{array}{l}
F_{k}=\text { weifnt of the layer } \\
d_{k}=\text { distouce }
\end{array}\right. \\
& F_{k}=w \cdot V_{k}, V_{k}=\text { volume } f \\
& =\omega\left(\left.\bar{y}\right|^{2} \Delta y\right)
\end{aligned}
$$

where $\frac{r}{4}=\frac{y}{10} \Rightarrow r=\frac{2 y}{5}$

$$
\begin{aligned}
& F_{k}=9800 \pi \frac{4 y^{2}}{25} \Delta y \\
& d_{k}=12-y .
\end{aligned}
$$

Therfor,

$$
\begin{aligned}
& w=\lim _{n \rightarrow \infty} \sum_{k=1}^{n}\left(9800 \pi \frac{4 y^{2}}{25} \Delta y\right)(12 \cdot y) \\
& w=\int_{0}^{8} 9800 \pi \cdot \frac{4 y^{2}}{25}(12-y) d y \\
&=9800 \pi \cdot \frac{4}{25} \int_{0}^{8}\left(12 y^{2}-y^{3}\right) d y \\
&=1568 \pi\left[4 y^{3}-\frac{y^{4}}{4}\right]_{0}^{8} \\
&=1568 \pi(1024) \\
& W=1,605,632 \pi \mathrm{~N} \\
& w \approx 5,04,4241.7 \mathrm{~N}
\end{aligned}
$$

$-3-$
(5) $F=w \int_{0}^{2}\binom{$ Stip }{ tenjta }$\binom{$ stip }{$\operatorname{dipth}} d y$

Striplerest $=2 x=2(2 y)=4 y$
strip depth $=2-y$

$$
\begin{aligned}
\bar{F} & =64 \int_{0}^{2} 4 y(2-y) d y \\
& =64 \int_{0}^{2}\left(8 y-4 y^{2}\right) d y \\
& \left.=64\left(4 y^{2}-\frac{4}{3} y^{3}\right]_{0}^{2}\right) \\
& =64\left(16-\frac{32}{3}\right)=64 \cdot \frac{16}{3} \\
7 & =\frac{1024}{3} \approx 341.316 \cdot 4 t
\end{aligned}
$$

(5) © $\cosh 2 x=\cosh _{4}^{2} x+\sinh ^{2} x$

$$
h x=\frac{e^{x}+e^{-x}}{2}, \quad \sin h x=\frac{e^{x}-e^{-x}}{2}
$$

Then, $\cosh (2 x)=\frac{e^{2 x}+e^{-2 x}}{2}$
$\cosh ^{2} x+\sinh ^{2} x=\left(\frac{e^{x}+e^{-x}}{2}\right)^{2}+$

$$
+\left(\frac{e^{x}-e^{-x}}{2}\right)^{2}
$$

$\cosh ^{2} x+\sinh ^{2} x=$

$$
\begin{aligned}
& =\frac{e^{2 x}+e^{-2 x}+2+e^{2 x}-2+e^{-2 x}}{4} \\
& =\frac{e^{2 x}+e^{-2 x}}{2}=\cos 2 x
\end{aligned}
$$

Therfore, $\cosh 2 x=\cosh ^{2} x+\sin 4^{2} x$.

$$
\text { (6) } \frac{d}{d x}(\tanh x)=\operatorname{sech}{ }^{2} x
$$

Prook

$$
\begin{aligned}
& \frac{d}{d x}(\operatorname{tah} x)=\frac{d}{d x}\left(\frac{e^{x}-e^{-x}}{e^{x}+e^{-x}}\right) \\
& =\frac{\left(e^{x}+e^{-x}\right)^{2}-\left(e^{x}-e^{-x}\right)^{2}}{\left(e^{x}+e^{-x}\right)^{2}} \\
& =\frac{4 e^{x} e^{-x}}{\left(e^{x}+e^{-x}\right)^{2}}=\frac{4}{\left(e^{x}+e^{-x}\right)^{2}}=\left(\frac{2}{e^{x}+e^{-x}}\right)^{2} \\
& =\operatorname{sech} h^{2} x \\
& \text { so } \frac{d}{d x}(\tan x)=\operatorname{tech}^{2} x
\end{aligned}
$$

(6) Area $=\int_{1}^{\infty} \frac{\ln x}{x^{2}} d x$

$$
\begin{aligned}
& =\lim _{t \rightarrow \infty} \int_{1}^{t} \frac{\ln x}{x^{2}} d x \\
& \quad \operatorname{let}\left[f=\ln x \geq g^{\prime}=x^{-2}\right. \\
& f^{\prime}=\frac{1}{x} \leftarrow g=-\frac{1}{x} \\
& \left.=\lim _{t \rightarrow \infty}\left(-\frac{1}{x} \ln x\right]_{1}^{t}+\int_{1}^{t} \frac{1}{x^{2}} d x\right) \\
& \left.=\lim _{t \rightarrow \infty}\left(-\frac{1}{t} \ln t-\frac{1}{x}\right]_{1}^{t}\right)
\end{aligned}
$$

$$
\begin{aligned}
\text { Aea } & =\lim _{t \rightarrow \infty}\left(-\frac{1}{t} \ln t-\frac{1}{t}+1\right) \\
& =1-\lim _{t \rightarrow \infty} \frac{1}{t}-\lim _{t \rightarrow \infty} \frac{\ln t}{t} \\
& =1-0-\lim _{t \rightarrow \infty} \frac{\frac{1}{t}}{1}=1
\end{aligned}
$$

so the area is fivite

$$
\text { Area }=1 u^{2} \text { it }^{2}
$$

- partitien $[a, b)$

$$
a=x_{0}<x_{1}<x_{2}<\ldots<x_{n}=b
$$

$L=$ kuptro the cume

$$
\begin{aligned}
\mathcal{L} & =\lim _{n \rightarrow \infty} \sum_{k=1}^{n} P_{k-1} P_{k} \\
& =\lim _{n \rightarrow \infty} \sqrt{\left(\Delta x_{k}\right)^{2}+\left(\Delta y_{k}\right)^{2}}
\end{aligned}
$$

sut, by the Mean Salue Theital
I $c_{k} \in\left[x_{k}, x_{k}\right]$ such trot

$$
\begin{gathered}
f^{\prime}\left(c_{k}\right)=\frac{\Delta y_{k}}{\Delta x_{k}} \\
\text { so } \Delta y_{k}=f^{\prime}\left(c_{k}\right) \cdot \Delta x_{k} \\
L=\lim _{n \rightarrow \infty} \sqrt{\left(\Delta x_{k}\right)^{2}+\left(\Delta x_{k}\right)^{2}\left[f^{\prime}\left(c_{k}\right)\right]^{2}} \\
=\lim _{n \rightarrow \infty} \Delta x_{k} \sqrt{1+\left[f^{\prime}\left(c_{k}\right)\right]^{2}}
\end{gathered}
$$

Therefor,

$$
\begin{aligned}
& L=\int_{a}^{b} \sqrt{1+\left(f^{\prime}(x)\right)^{2}} d x \\
& L=\int_{a}^{b} \sqrt{1+\left(\frac{d y}{d x}\right)^{2}} d x
\end{aligned}
$$

(8) $\left(t^{2}-3 t+2\right) \frac{d x}{d t}=1$

$$
t>2, \quad x(3)=0
$$

solulim

$$
\begin{aligned}
& \frac{d x}{d t}=\frac{1}{t^{2}-34+2} \\
& \frac{d x}{d t}=\frac{1}{(t-1)(t-2)} \\
& x=\int \frac{1}{(t-1)(t-2)} d t \\
& \frac{1}{(t-1)(t-2)}=\frac{A}{t-1}+\frac{B}{t-2} \\
& 1=A(t-2)+B(t-1) \\
& 1=A t+B t-2 A-B \\
& \{A+B=0 \\
& -2 A-B=1
\end{aligned}
$$

$$
\begin{array}{r}
\oplus \quad-A=1 \Rightarrow \quad A=1 \\
\text { then } B=1
\end{array}
$$

$$
\begin{aligned}
& \infty \frac{1}{(t-1)(t-2)}=\frac{-1}{t-1}+\frac{1}{t-2} \\
& x=\int \frac{-1}{t-1} d t+\int \frac{1}{t-2} d t \\
& x=-\ln |t-1|+\ln |t-2|+c \\
& \quad t>2 \\
& x=-\ln (t-1)+\ln (t-2)+C
\end{aligned}
$$

$$
\begin{aligned}
& x(3)=0 \Rightarrow c=\ln 2 \\
& 0=-\ln 2+c \Rightarrow c
\end{aligned}
$$

Therfore,

$$
\begin{aligned}
& x=-\ln (t-1)+\ln (t-2)+\ln 2 \\
& x=\ln \frac{2(t-2)}{t-1}
\end{aligned}
$$

(9)(a) $i=\int_{0}^{13 / 2} \frac{4 x^{2} d x}{\left(1-x^{2}\right)^{3 / 2}}$
let $x=\sin t, \quad t \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ (note $x \neq \pm 1$, so $t \neq \pm \frac{\pi_{2}}{2}$)

$$
\begin{aligned}
& d x=\cos t d t \\
& 1-x^{2}=\cos ^{2} t \\
& x=0, t=0 \\
& x=\frac{\sqrt{3}}{2}, \quad t=\frac{\pi}{3}
\end{aligned}
$$

$$
\begin{aligned}
i & =\int_{0}^{\pi / 3} \frac{4 \sin ^{2} t \cdot \cos t d t}{\left(\cos ^{2} t\right)^{3 / 2}} \\
& =4 \int_{0}^{\pi / 3} \frac{\sin ^{2} t}{\cos ^{2} t} d t \\
& =4 \int_{0}^{\pi / 3} \frac{1-\cos ^{2} t}{\cos ^{2} t} d t \\
& =4 \int_{0}^{\pi / 3}\left(\sec ^{2} t-1\right) d t \\
& \left.\left.=4(\tan t)_{0}^{\pi / 3}-t\right)_{0}^{\pi / 3}\right) \\
& =4\left(\sqrt{3}-\frac{\pi}{3}\right) \\
& i=4 \sqrt{3}-\frac{4}{3} \pi
\end{aligned}
$$

$$
\begin{aligned}
& \text { (b) } i=\int \sin ^{4} \theta d \theta \\
& =\int\left(\sin ^{2} \theta\right)^{2} d \theta \\
& =\int\left(\frac{1-\cos 2 \theta}{2}\right)^{2} d \theta \\
& =\frac{1}{4} \int\left(1-2 \cos 2 \theta+\cos ^{2} 2 \theta\right) d \theta \\
& =\frac{1}{4}\left(\theta-\sin 2 \theta+\int \frac{1+\cos 4 \theta}{2} d \theta\right) \\
& =\frac{1}{4} \theta-\frac{1}{4} \sin 2 \theta+\frac{1}{8}\left(\theta+\frac{1}{4} \sin 4 \theta\right) \\
& =\frac{1}{4} \theta-\frac{1}{4} \sin 2 \theta+\frac{1}{8} \theta+\frac{1}{32} \sin 4 \theta \\
& i=\frac{3}{8} \theta-\frac{1}{4} \sin 2 \theta+\frac{1}{32} \sin 4 \theta+c
\end{aligned}
$$

(c) $i=\int_{-\infty}^{\infty} 2 x e^{-x^{2}} d x$

$$
\begin{aligned}
& i=\int_{-\infty}^{0} 2 x e^{-x^{2}} d x+\int_{0}^{\infty} 2 x e^{-x^{2}} d x \\
& \text { Let } i_{2}=\int_{0}^{\infty} 2 x e^{-x^{2}} d x \\
& =\lim _{t \rightarrow \infty} \int_{0}^{t} 2 x e^{-x^{2}} d x \\
& \quad 1 e t e^{-x^{2}}=u \\
& -2 x e^{-x^{2}} d x=d u \\
& x=0, u=1 \\
& \quad x=t, u=e^{-t^{2}} \\
& =\lim _{t \rightarrow \infty} \int_{0}^{e^{-t^{2}}-u d u==-} \\
& =-\lim _{t \rightarrow \infty} \frac{u^{2}}{2} \int_{0}^{e^{-t^{2}}}=+1
\end{aligned}
$$

Similorly, $i,=\int_{-\infty}^{0} \frac{2 x e^{-x^{2}} d x=-1}{1 i=1+1}$ $\infty \quad i_{1}=1_{1}+i_{2}=0$

$$
\begin{aligned}
& \text { (d) } \int_{1}^{3} \frac{2}{\sqrt{x-1}} d x= \\
&=\lim _{t \rightarrow 1^{+}} \int_{t}^{3} \frac{2}{\sqrt{x-1}} d x \\
&\left.=2 \lim _{t \rightarrow 1^{+}} 2 \sqrt{x-1}\right]_{t}^{3} \\
&=4 \lim _{t \rightarrow 1^{+}}(\sqrt{2}-\sqrt{t-1}) \\
&=4 \sqrt{2} \\
& \text { so } \int_{1}^{3} \frac{2}{\sqrt{x-1}} d x=4 \sqrt{2}
\end{aligned}
$$

(f) $\int_{0}^{\pi / 2} \cos ^{2} y d y=\int_{0}^{\pi / 2} \frac{1+\cos 2 y}{2} d y$

$$
=\frac{1}{2}\left(\int_{0}^{5 / 2} d y+\int_{0}^{\pi / 2} \cos 2 y d y\right)
$$

$$
\left.=\frac{1}{2}\left(\frac{\pi}{2}+\frac{1}{2} \sin 2 y\right]_{0}^{\pi / 2}\right)
$$

$$
=\frac{\frac{1}{2}\left(\frac{\pi}{2}+0\right)=\frac{\pi}{4}}{\int_{0}^{\pi / 2} \cos ^{2} y d y=\frac{\pi}{4}}
$$

(g) $i=\int \frac{x^{3}}{\sqrt{x^{2}+4}} d x$
(e) $i=\int_{0}^{1} \ln x d x=\lim _{t \rightarrow 0^{+}} \int_{t}^{1} \ln x d x$

$$
\left[\begin{array}{l}
f=m x \Longleftrightarrow g^{\prime}=1 \\
f^{\prime}=\frac{1}{x} \gtrless g=x
\end{array}\right.
$$

$$
\left.i=\lim _{t \rightarrow 0^{+}}(x \ln x\rangle_{t}^{\prime}-\int_{t}^{1} d x\right)
$$

$$
=\lim _{t \rightarrow 0^{+}}(-t \ln t-1+t)
$$

$$
=-1+0-\lim _{t \rightarrow 0^{+}}(t \ln t)
$$

$$
=-1-\lim _{t \rightarrow 0^{+}} \frac{\ln t}{\frac{1}{t}}\left(\frac{x}{\infty}-\cos x\right)
$$

$$
=-1-\lim _{t \rightarrow 0^{+}} \frac{\frac{1}{t}}{-\frac{1}{t^{2}}}
$$

$=-1+\lim _{t \rightarrow 0^{+}} t=-1$
$\infty \quad \int_{0}^{1} \ln x d x=-1$
let $\sqrt{\sqrt{x^{2}+4}}=u$

$$
\begin{aligned}
& \frac{1}{2 \sqrt{x^{2}+y}} \cdot 2 x d x=d u \\
& \frac{x d y}{\sqrt{x^{2}+y}}=d u
\end{aligned}
$$

tren,

$$
\begin{aligned}
& x^{2}+4 \\
& x^{2}+4=u^{2} \\
& x^{2}=u^{2}-4
\end{aligned}
$$

$$
\begin{aligned}
i^{\prime} & =\int\left(u^{2}-4\right) d u \\
& =\frac{u^{3}}{3}-x u+c \\
i & =\frac{1}{3} \sqrt{\left(x^{2}+4\right)^{3}}-4 \sqrt{x^{2}+4}+c
\end{aligned}
$$

$$
\text { to } i=\int \frac{d x}{x\left(x^{2}+1\right)^{2}}=
$$

$$
=\int \frac{1}{x} d x+\int \frac{-x}{x^{2}+1} d x+\int \frac{-x}{\left(x^{2}+1\right)^{2}} d x
$$

$$
\left(\begin{array}{rl}
\text { let } x^{2}+1 & =u \\
2 x d x & =d u
\end{array}\right)
$$

$$
=\ln |x|-\frac{1}{2} \ln \left|x^{2}+1\right|-\frac{1}{2} \int u^{-2} d u
$$

$$
=\ln |x|-\frac{1}{2} \ln \left|x^{2}+1\right|+\frac{1}{2\left(x^{2}+1\right)}+C
$$

$$
j=\ln |x|-\frac{1}{2} \ln \left|x^{2}+1\right|+\frac{1}{2\left(x^{2}+1\right)}+c
$$

$$
\begin{aligned}
& \text { (i) } i=\int_{\frac{5 .}{6}}^{\pi} \frac{\cos ^{4} x}{\sqrt{1-\sin x}} d x \\
& =\int_{5 \pi / 6}^{5} \frac{\cos ^{4} x \sqrt{1+\sin x}}{\sqrt{(1-\sin x)(1+\sin x)}} d x \\
& =\int_{5 i / 6}^{-} \frac{\cos ^{4} x \sqrt{1+\sin x}}{1 \cos x)} d x \\
& \left.\begin{array}{c}
(1 \cos x)=-\cos x \\
\operatorname{ax}\left[\frac{5}{5}, 5\right]
\end{array}\right) \\
& =-\int_{5 \pi / 0}^{5} \cos ^{3} x \sqrt{1+\sin x} d x \\
& \text { on }\left[\frac{\pi}{5}, y\right] \\
& \text { let } 1+\sin x=u \\
& \cos x d x=d u \\
& \sin x=u-1 \\
& \cos ^{2} x=1-\sin ^{2} x \\
& =1-(u-1)^{2}=2 u-u^{2} \\
& x=\frac{5 \pi}{6}, u=\frac{3}{2} \\
& x=\pi, \quad u=1 \\
& i=-\int_{3 / 2}^{1}\left(2 u-u^{2}\right) \sqrt{u} d u \\
& =\int_{1}^{3 / 2}\left(2 u-u^{2}\right) u^{\frac{1}{2}} d u \\
& =2 \int_{1}^{3 / 2}\left(u^{3 / 2}-u^{5 / 2}\right) d u \\
& \left.\left.=2\left(\frac{2 u^{\frac{5}{2}}}{5}\right]_{1}^{3 / 2}-\frac{2 u^{\frac{7}{2}}}{7}\right]_{1}^{3 / 2}\right) \\
& =\frac{4}{5}\left(\frac{3}{2}\right)^{5 / 2}-\frac{4}{5}-\frac{4}{7}\left(\frac{3}{2}\right)^{\frac{7}{2}}+\frac{4}{7} \\
& i=\frac{-P}{35}+\frac{4}{5}\left(\frac{3}{2}\right)^{5 / 2}-\frac{4}{7}\left(\frac{3}{2}\right)^{7 / 2}
\end{aligned}
$$

$$
\begin{aligned}
& \text { (h) } \frac{1}{x\left(x^{2}+1\right)^{2}}=\frac{A}{x}+\frac{B x+C}{x^{2}+1}+\frac{O x+E}{\left(x^{2}+1\right)^{2}} \\
& 1=A\left(x^{2}+1\right)^{2}+x(B x+C)\left(x^{2}+1\right)+ \\
& +\times 10 x+E) \\
& 1=A x^{4}+2 A x^{2}+A+\left(B x^{2}+C x\right)\left(x^{2}+1\right) \\
& +D x^{2}+x E \\
& 1=A x^{4}+2 A x^{2}+A+B x^{4}+B x^{2} \\
& +C x^{3}+C x+D x^{2}+x E \\
& 1=(A+B) x^{4}+(2 A+B+C+D) x^{2} \\
& +C x^{3}+(C+E) x+A \\
& \operatorname{ros} A+B=0 \\
& \left\{\begin{array} { c }
{ C = 0 } \\
{ 2 A + B + D = 0 } \\
{ C + E = 0 } \\
{ A = 1 }
\end{array} \Rightarrow \left\{\begin{array}{l}
A=1 \\
B=-1 \\
C=0 \\
D=-1 \\
E=0
\end{array}\right.\right.
\end{aligned}
$$

$$
\begin{aligned}
& \text { (i) } i=\int \sec ^{3} \theta d \theta \\
& =\int \sec ^{2} \theta \sec \theta d \theta \\
& =\int\left(1+\operatorname{ton}^{2} \theta\right) \operatorname{se\theta } \theta d \theta \\
& =\int \sec \theta d \theta+\int \sec \theta \tan ^{2} \theta d \theta \\
& =\ln |\sec \theta+\tan \theta|+ \\
& +\int \tan \theta(\sec \theta \tan \theta) d \theta \\
& {\left[\begin{array}{l}
F=\sin \theta \\
\delta^{\prime}=\sec \theta \sin \theta \\
f^{\prime}=\sec ^{2} \theta \geq \delta=\sec \theta
\end{array}\right.} \\
& i=\ln |\sec \theta+\sin \theta|+\sec \theta \sin \theta-1 \\
& 2 i=\ln / \sec \theta+\operatorname{sen} \theta /+\sec \theta \tan \theta \\
& \begin{array}{r}
i=\frac{1}{2} \ln |\sec \theta+\tan \theta|+\frac{1}{2} \sec \theta \tan \theta \\
+c
\end{array}
\end{aligned}
$$

(k) $j_{-\infty}^{0}=\int_{-\infty}^{0} x e^{x} d x$

$$
\begin{aligned}
& \quad\left[\begin{array}{l}
t=x \\
f^{\prime}=1<8^{\prime}=e^{x} \\
=e^{x}
\end{array}\right. \\
& \left.=\lim _{t \rightarrow-\infty}\left(x e^{x}\right)_{t}^{0} \int_{e^{x}}^{0} d x\right) \\
& =\lim _{t \rightarrow-\infty}\left(0-t e^{t}-\left(1-e^{t}\right)\right) \\
& =\lim _{t \rightarrow-\infty}\left(e^{t}-1-t e^{t}\right)
\end{aligned}
$$

(m) $j=\int \frac{d x}{x^{2}+x+3}$
wote that $x^{2}+x+3$ drem't have real teros.

$$
\begin{gathered}
x^{2}+x+3=x^{2}+x+\frac{1}{4}+\frac{11}{4} \\
=\left(x+\frac{1}{2}\right)^{2}+\frac{11}{4} \\
1=\int \frac{d x}{\left(x+\frac{1}{2}\right)^{2}+\frac{11}{4}}
\end{gathered}
$$

knon $\int \frac{d x}{x^{2}+a^{2}}=\frac{1}{a} \operatorname{tun}^{-1} \frac{x}{a}+c$
Dien fore,

$$
\begin{aligned}
& \prime^{\prime}=\frac{2}{\sqrt{11}} \tan ^{-1} \frac{x+\frac{1}{2}}{\frac{\sqrt{11}}{2}}+c \\
& I^{\prime}=\frac{2}{\sqrt{11}} \tan ^{-1} \frac{2 x+1}{\sqrt{11}}+c
\end{aligned}
$$

(n) $j=\int \sin ^{-1} x d x$
let $\left[y=\sin ^{-1} x, \quad y \in\left[\frac{-\pi}{2}, \frac{\pi}{2}\right]\right.$

$$
i=\int y \cos y d y
$$

$$
\operatorname{let}\left[\begin{array}{l}
f=y \quad g^{\prime}=\cos y \\
f^{\prime}=1 \approx g=\sin y
\end{array}\right.
$$

$I=y \sin y-\int \sin y d y$

$$
\begin{aligned}
& =x \sin ^{-1} x-\cos y+c \\
& =x \sin ^{-1} x-\cos \left(\sin ^{-1} x\right)+c
\end{aligned}
$$

$$
\begin{aligned}
& \text { (10) (a) } \int_{0}^{2} \frac{d x}{1-x^{2}} d x= \\
& =\int_{0}^{1} \frac{d x}{1-x^{2}}+\int_{1}^{2} \frac{d x}{1-x^{2}}
\end{aligned}
$$

let $i_{1}=\int_{0}^{1} \frac{d x}{1-x^{2}}$

$$
\begin{aligned}
& =\lim _{t \rightarrow 1^{-}} \int_{0}^{t} \frac{d x}{1-x^{2}} d x \\
& \frac{1}{1-x^{2}}=\frac{A}{1-x}+\frac{B}{1+x} \\
& 1=A(1+x)+B(1-x) \\
& 1=A+A x+B-B x \\
& \left\{\begin{array}{l}
A-B=0 \\
A+B=1 \Rightarrow A=-\frac{1}{2}
\end{array}\right. \\
& B=\frac{1}{2} \\
& i_{1}=\lim _{t \rightarrow-(}\left(\int_{0}^{t} \frac{1}{2(1-x)} d x+\int_{0}^{t} \frac{1}{2(1+x)} d x\right) \\
& \left.\left.=\lim _{t \rightarrow 1}\left(\frac{-1}{2} \ln (1+x)\right]_{0}^{t}+\frac{1}{2} \ln (1+x)\right]_{0}^{t}\right) \\
& \left.=\lim _{t \rightarrow 1^{-}} \frac{1}{2} \ln \left|\frac{1+x}{1-x}\right|\right]_{0}^{t} \\
& =\lim _{t \rightarrow 1^{-}} \frac{1}{2} \ln \left|\frac{1+t}{1-t}\right|=\infty \\
& \begin{array}{l}
t \rightarrow 1^{\prime} \\
\text { so } i_{1}=\text { dimersent } \Rightarrow i^{i}=\text { dinergent }
\end{array}
\end{aligned}
$$

(b)

$$
\begin{aligned}
& \text { b) } \int_{1}^{\infty} \frac{d x}{x^{5}+2} \\
& x^{5}+2>x^{5} \geqslant 1, \forall x \geqslant 1 \\
& \frac{1}{x^{5}+2}<\frac{1}{x^{5}}, \forall x \geqslant 1
\end{aligned}
$$

ond $\int_{1}^{\infty} \frac{1}{x^{5}} d x$ is conrejent

$$
\text { as } p>1
$$

by Direct Crmpairm Tert

$$
\Rightarrow \left\lvert\, \int_{1}^{\infty} \frac{1}{x^{5}+2} d x\right. \text { is convejent }
$$

(c)

$$
\begin{aligned}
& \int_{0}^{\infty} \sin x d x=\lim _{t \rightarrow \infty} \int_{0}^{t} \sin x d x \\
& \left.=\lim _{t \rightarrow \infty}(-\cos x]_{0}^{t}\right) \\
& =\lim _{t \rightarrow \infty}(-\cos t+1)
\end{aligned}
$$

but $\lim _{t \rightarrow \infty} \cos t-\operatorname{dos}$ not exidt
Thorefore, $\int_{0}^{\infty} \sin x d x \mathrm{~N}$

