QUIZ \#2 @ 100 points

Write neatly. Show all work. No work, no credit given. Write all responses on separate paper. Clearly label the exercises. No graphing calculator allowed. No phone allowed.

1. The exercise gives parametric equations and parameter interval for the motion of a particle in the $x y$-plane.
a) Identify the particle's path by finding a Cartesian equation for it.
b) Graph the Cartesian equation. Indicate the portion of the graph traced by the particle and the direction of motion.

$$
x=t+\frac{1}{t}, y=t-\frac{1}{t}, t>0
$$

2. Find parametric equations and a parameter interval for the motion of a particle that starts at $(2,0)$ and traces the top half of the circle $x^{2}+y^{2}=4$ four times.
3. Find an equation for the line tangent to the curve at the point defined by the given value of t.

$$
x=\frac{1}{t}, \quad y=-2+\ln t, t=1
$$

4. Find the Cartesian coordinates of the following point given in polar coordinates:

$$
\left(-3, \frac{5 \pi}{6}\right)
$$

5. a) Find the polar coordinates, $-\pi \leq \theta<\pi$ and $r \geq 0$, of the following point given in Cartesian coordinates:

$$
(5,-12)
$$

b) Find the polar coordinates, $0 \leq \theta<2 \pi$ and $r \leq 0$, of the following point given in Cartesian coordinates:

$$
(-1, \sqrt{3})
$$

6. Replace the polar equation with equivalent Cartesian equations. Then describe or identify the graph.

$$
r^{2}=3 r \cos \theta
$$

7. Replace the Cartesian equation with equivalent polar equations.

$$
x^{2}-y^{2}=1
$$

8. Graph the sets of points whose polar coordinates satisfy the inequalities:
a) $0 \leq \theta \leq \frac{\pi}{6}, r \geq 0$
b) $-\frac{\pi}{4} \leq \theta \leq \frac{\pi}{4},-1 \leq r \leq 1$
9. a) Graph the curve $r=1-\cos \theta$. Show all work; in order to get credit, you must justify your polar coordinate graph by first showing either a Cartesian $r \theta$-graph or a table of values. (You may want to check for symmetries.)
b) Find the slope of the curve at $\theta=\frac{\pi}{2}$ and sketch the tangent at that point on the graph.
10. Graph the following curves. Show all work. ; in order to get credit, you must justify your polar coordinate graph by first showing either a Cartesian graph or a table of values. (You may want to check for symmetries.)
a) $r^{2}=\sin 2 \theta$
b) $r=\sin 2 \theta$
c) $r=\frac{1}{2}+\cos \theta$
d) $r^{2}=4 \cos 2 \theta$
11. a) First, graph the circle $r=2 \sin \theta$.
b) Then find the area of the region bounded by the circle for $\frac{\pi}{4} \leq \theta \leq \frac{\pi}{2}$.
12.

a) Graph the circle $r=6$ and the line $r=3 \csc \theta$. Show all work.
b) Find the common points of the two graphs.
c) Find the area inside the circle and above the line.

Quiz \#2-spursios
(1) $x=t+\frac{1}{t}, y=t-\frac{1}{t}, t>0$
(a)

$$
\begin{aligned}
& \text { (a) } \left.\begin{array}{rl}
x-y & =\frac{2}{t} \\
x+y=2 t
\end{array}\right\} \Rightarrow \\
& (x-y)(x+y)=\frac{2}{t} \cdot 2 t=4 \\
& \text { so } x^{2}-y^{2}=4, x=\sqrt{4+y^{2}}
\end{aligned}
$$

hyperbola;
wote tuat $x=t+\frac{1}{t}>0$
for $\forall t>0$
So just the rifut-braudh of the hyverbol $=\sqrt{4+y^{2}}$

$$
x=\sqrt{4+y^{2}}
$$

(b) $x^{2}-y^{2}=4$

$$
\left(\frac{x}{2}\right)^{2}-\left(\frac{y}{2}\right)^{2}=1
$$

(2) $x^{2}+y^{2}=4$
want $y \geqslant 0$

$$
\text { let }\left\{\begin{array}{l}
x=2 \text { cost } \in[-2,2] \\
y=2|\sin t| \in[0,2] \\
0 \leq t \leq 4 y
\end{array}\right.
$$

(3) $x=\frac{1}{t}, y=-2+\ln t, t=1$

When $t=1, x=1, y=-2$
Need $m=\left.\frac{d y}{d x}\right|_{t=1}$

$$
\frac{d y}{d x}=\frac{\frac{d y}{d t}}{\frac{d x}{d t}}=\frac{\frac{1}{t}}{-\frac{1}{t^{2}}}=-t
$$

$$
\left.\frac{d y}{d x}\right|_{t=1}=-1=m
$$

Use $m=-1,(1,-2)$

$$
\begin{aligned}
& y-y_{1}=m\left(x-x_{1}\right) \\
& y+2=-(x-1)
\end{aligned}
$$

$y=-x-1$ line toigut
to the curre when $t=1$
(4) $\left(-3, \frac{5 \pi}{6}\right)$
know $r=-3, \theta=\frac{5 \pi}{6}$
these pee the point is is quadrant II
want x, y

$$
\begin{aligned}
x=r \cos \theta & =-3 \cos \frac{5 \pi}{6} \\
& =-3\left(-\cos \frac{\pi}{6}\right) \\
& =-3\left(-\frac{\sqrt{3}}{2}\right)=\frac{3 \sqrt{3}}{2} \\
y=r \sin \theta & =-3 \sin \frac{5 \pi}{6} \\
& =-3 \sin \frac{6}{6}=-3 \cdot \frac{1}{2}
\end{aligned}
$$

The point is $\left(\frac{3 \sqrt{3}}{2}, \frac{-3}{2}\right)$
(b) $(-1, \sqrt{3}) \in$ II

Know $x=-1, y=\sqrt{3}$
want $\theta \in[0,2 \overline{4}), r \leq 0$

$$
\begin{aligned}
& r^{2}=x^{2}+y^{2}=1+3=y \\
& r= \pm 2 \\
& \text { ant } r \leq 0 \quad\} \Rightarrow r=-2 \\
& \tan \theta=\frac{y}{x}=-\sqrt{3} \\
& \theta=\frac{-\pi}{3}+k \frac{1}{2}
\end{aligned}
$$

$r<0$, to weed to cleoore θ rude that its ray is in quodrout IT
so chook $\theta=2 \bar{y}-\frac{\pi}{3}=\frac{5 \pi}{3}$
The point is $\left(-2, \frac{5 \pi}{3}\right)$
(5) (a) $(5,-12) \in$ IV
know $x=5, y=-12$
want $\theta \in[-\pi, \pi]$ and $r \geqslant 0$

$$
\left.\begin{array}{l}
r^{2}=x^{2}+y^{2}=25+144=169 \\
r= \pm 13 \\
\text { but } r \geqslant 0
\end{array}\right\} \Rightarrow r=13
$$

$\tan \theta=\frac{y}{x}=-\frac{12}{5}$
$\theta=\tan ^{-1}\left(\frac{-12}{5}\right)=-\tan ^{-1} \frac{12}{5} \approx-1.17$ $\theta \in[-\pi, \pi)$
so the point is

$$
\left(13,-\operatorname{ton}^{-1} \frac{12}{5}\right)
$$

(6)
6) $r^{2}=3 r \cos \theta$

$$
x^{2}-3 x+y^{2}=0
$$

$x^{2}-3 x+\frac{9}{y}+y^{2}=\frac{9}{4}$
$\left(x-\frac{3}{2}\right)^{2}+y^{2}=\frac{9}{y}$
aide with center $\left(\frac{3}{2}, 0\right)$ oud rodius $\frac{3}{2}$
$-3-$

$$
\left.\begin{array}{l}
7 x^{2}-y^{2}=1 \\
x=r \cos \theta \\
y=r \sin \theta
\end{array}\right\}=1=1
$$

(8) (a) $0 \leq \theta \leq \frac{\pi}{6}, r \geqslant 0$

(b) $-\frac{\pi}{4} \leq \theta \leq \frac{\pi}{4},-1 \leq r \leq 1$

(a) (a) $r=1-\cos \theta$

Note that $\theta \mapsto-\theta$,

$$
\begin{aligned}
& r=1-\cos (-\theta) \\
& r=1-\cos \theta
\end{aligned}
$$

so $(r,-\theta) \in$ groph -so the sroph is rypumatric alout the x-fxis

(b) want $\left.\frac{d y}{d x}\right|_{\theta=\frac{\bar{y}}{2}}$

$$
\left.\begin{array}{l}
\frac{d y}{d x}=\frac{\frac{d y}{d \theta}}{\frac{d x}{d \theta}} \\
\left\{\begin{array}{l}
r=1-\cos \theta \\
r / \theta=\frac{\pi}{2}
\end{array}=1\right.
\end{array}\right\} \begin{aligned}
& r^{\prime}=\sin \theta \\
& r^{\prime} / \theta=\frac{-5}{2}=1
\end{aligned}
$$

$$
\begin{aligned}
& y=r \sin \theta \\
& \frac{d y}{d \theta}=r^{\prime} \sin \theta+r \cos \theta \\
& \left.\frac{d y}{d t}\right|_{\theta=\frac{\pi}{2}}=1 \cdot \sin \frac{\pi}{2}+1 \cdot \cos \frac{\pi}{2}=1 \\
& x=r \cos \theta \\
& \frac{d x}{d \theta}=r^{\prime} \cos \theta-r \sin \theta \\
& \left.\frac{d x}{d \theta}\right|_{\theta=\frac{j}{2}}=1 \cos \frac{1}{2}-1 \cdot \sin \frac{\pi}{2}=-1
\end{aligned}
$$

her, $\left|\frac{d y}{d x}\right|_{\theta=\frac{\pi}{2}}=\frac{1}{-1}=-1$
(10) (a) $r^{2}=\sin 2 \theta$

$$
\begin{aligned}
r \mapsto-r, \quad(-r)^{2} & =\sin 2 \theta \\
r^{2} & =\sin 2 \theta
\end{aligned}
$$

$$
r^{2}=\sin 2 \theta
$$

to $(-r, t) \in 80 \mathrm{ph}$ so the grople is symmetric alout the soi pin.

$r^{2}=\sin 2 \theta \quad$ sroph a sine cume. of peribd π and amplitu de 1
bont $1^{2} \geqslant 0$
when $\theta=0, r^{2}=0, r=0$
when $\theta=\frac{\bar{r}}{4}, r^{2}=1, r= \pm 1$
when $\theta=\frac{\pi}{2}, r^{2}=0, r=0$

(b) $r=\sin 2 \theta$

$$
\left.\begin{array}{rl}
r \mapsto-r \\
\theta \mapsto r-\theta
\end{array}\right\} \Rightarrow \begin{aligned}
-r & =\sin 2(\pi-\theta) \\
-r & =\sin (2 \pi-2 \theta) \\
-r & =\sin (-2 \theta) \\
-r & =-\sin 2 \theta
\end{aligned}
$$

$$
\text { so }(-r, j-\theta) \in \operatorname{sioh} \quad r=\sin 2 \theta
$$ so the sroph is symmetric alout the x-adis

$$
\left.\begin{array}{rl}
r \mapsto-r \\
\theta \mapsto-\theta
\end{array}\right\} \Rightarrow \begin{aligned}
-r & =\sin (-2 \theta) \\
-r & =-\sin 2 \theta \\
r & =\sin 2 \theta
\end{aligned}
$$

to $(-r,-\theta) \in$ sraph so the sroren is segm. dant the y-acis
$r=\sin 2 \theta$
snoph a sine curre if perbed Ij oud any itwde I

(C) $r=\frac{1}{2}+\cos \theta$
$\theta \mapsto-\theta, \quad r=\frac{1}{2}+\cos (-\theta)$

$$
r=\frac{1}{2}+\cos \theta
$$

to $(r,-\theta) \in$ grook so the sroph is symmetur alout x axis
Graph a corine curve of periol $2 \bar{y}$ and amplitude I, shifted up $\frac{1}{2}$
(d) $r^{2}=4 \cos 2 \theta$

$r \mapsto-r$, then $(-r, \theta) \in$ grople to the sroph is oymmetric alout the orisin
$r \mapsto-r, \theta \mapsto-\theta,(-r,-\theta) \epsilon$ sroph
to the sroph is rymmetric alont tre y-axis
$\theta \mapsto-\theta,(r,-\theta) \in$ scoph to the sroh is symmetur alont x axis.

- mi'll groph a codine curve of amplituder $\$$ oud puival I

$$
r^{2} \geqslant 0
$$

when $\theta=0, r^{2}=4, r= \pm 2$
when $\theta=\frac{\pi}{4}, r^{2}=0, r=0$
when $\theta=\frac{3 \pi}{4}, r^{2}=0, r=0$
when $\theta=\pi, r^{2}=4, r= \pm 2$

(11) (a) $r=2 \sin \theta$
then $r^{2}=2 r \sin \theta$

$$
\begin{aligned}
& x^{2}+y^{2}-2 y=0 \\
& x^{2}+y^{2}-2 y+1=1 \\
& x^{2}+(y-1)^{2}=1
\end{aligned}
$$

circe with center (0,1) oud odious I
 by the circe for $\theta \in\left[\frac{\pi}{4}, \frac{\pi}{2}\right]$

$$
\begin{aligned}
& A=\int_{\alpha}^{B} \frac{1}{2} r^{2} d \theta \\
& A=\int_{\pi / 4}^{\pi / 2} \frac{1}{2}(2 \sin \theta)^{2} d \theta \\
& =2 \int_{\pi / 4}^{\pi / 4} \sin ^{2} \theta d \theta \\
& =2 \int_{\pi / 4}^{\pi / 2} \frac{1-\cos 2 \theta}{2} d \theta \\
& =\int_{\pi / 4}^{\pi / 2}(1-\cos 2 \theta) d \theta \\
& =\left(\theta-\frac{1}{2} \sin 2 \theta\right)_{\pi}^{\pi / 2} \\
& =\left(\frac{\pi}{2}-0\right)-\left(\frac{\pi}{4}-\frac{1}{2}\right) \\
& =\frac{\pi}{4}+\frac{1}{2}
\end{aligned}
$$

to $A=\frac{\pi}{4}+\frac{1}{2}$ to. wing
(12) (a) $r=6$ iirle
of center 0 and

$$
r=3 \mathrm{ctc} \theta
$$

$$
r=\frac{3}{\sin \theta}
$$

$$
r \sin \theta=3
$$

$$
\begin{aligned}
& =[36 \theta-9(-\cot \theta)]_{\pi / 6}^{\pi / 2} \\
& =36\left(\frac{\pi}{2}-\frac{\pi}{6}\right)+9\left(\cot \frac{\pi}{2}-\cot \frac{\pi}{6}\right) \\
& =12 \pi-9 \cdot \sqrt{3} \\
& \mid A=12 \pi-9 \sqrt{3} \text { s.ucuib }
\end{aligned}
$$

$y=3$ nonifutol line

(b)

$$
\begin{aligned}
& 3 \csc \theta=6 \\
& \sin \theta=\frac{1}{2} \\
& \theta=\pi / 6 \text { or } 6^{5 \pi}
\end{aligned}
$$

(c) let $A=$ area

$$
\begin{aligned}
A & =\int_{\pi / 6}^{5 \pi / 6} \frac{1}{2}\left(6^{2}-(3 \csc \theta)^{2}\right) d \theta \\
& =2 \int_{\pi / 6}^{\pi / 2} \frac{1}{2}\left(36-9 \csc ^{2} \theta\right) d \theta \\
& =\int_{\pi / 6}^{\pi / 2}\left(36-9 \csc ^{2} \theta\right) d \theta
\end{aligned}
$$

