TEST 3 @ 120 points

Write in a neat and organized fashion. Write your complete solutions on SEPARATE PAPER. You should use a pencil. For an exercise to be complete there needs to be a detailed solution to the problem. Do not just write down an answer. No proof, no credit given! Clearly label each exercise.

1. Solve each equation in \mathbb{C} (the set of complex numbers) by the indicated method.
a) $4(x-3)^{2}+50=0$ by the square root property.
b) $3 y^{2}-4 y+1=0$ by completing the square.
c) $\frac{t^{2}}{5}-\frac{t}{3}=\frac{2}{3}$ by the quadratic formula.
d) $2 x^{2}+x y+y^{2}=3$ solve for y in terms of x.
e) $2 x^{4}-3 x^{2}+1=0$ using substitution.
2. Solve the following inequalities.
a) $x^{2}-6 x+5 \leq 0$
b) $\frac{1}{x-5}<\frac{3}{2-x}$
3. Let $f(x)=3 x-1$ and $g(x)=\frac{2-x}{x+1}$. Answer the following questions:
a) Find $(g \circ f)(x)$.
c) Find $f^{-1}(x)$.
b) $(f \circ g)(1)$
d) Find $g^{-1}(x)$.
4. Simplify the following expressions.
a) $3 \ln x-5 \ln y+2 \ln z$
b) $\frac{1}{3}\left(\log _{5} x-\log _{5} y\right)+3 \log _{5}(x+2)$
c) $\log _{3} 405-\log _{3} 5+\log 5+\log 2$
d) $\log _{10}\left(\log _{3}\left(\log _{5} 125\right)\right)$
5. a) Graph $f(x)=3^{x}$ by plotting at least 3 points . Find its domain, range, and asymptote. Label the axes and all the points
b) Graph $g(x)=\log _{2} x$ by plotting at least 3 points . Find its domain, range, and asymptote. Label the axes and all the points
6. For the equation given below, answer all the questions and graph the function (Be sure to label the axes and all points used). SHOW ALL WORK!

$$
y=-2 x^{2}+3 x+2
$$

a) What type of curve is this?
b) What is the y-intercept?
c) What is the vertex
d) What are the x -intercept(s) (if any)?
e) What is the domain of the function?
f) What is the range of the function?
g) Using the graph above, solve the following inequality: $-2 x^{2}+3 x+2>0$
h) What is the vertex form of the equation?
7. State whether each statement is TRUE or FALSE. Justify your answer.
a) $\log (a+b)=\log a \cdot \log b$
b) $\log \left(\frac{a}{b}\right)=\frac{\log a}{\log b}$
c) $\log 3 x^{5}=5 \log 3 x$
8) The owners of a small fruit orchard decide to produce gift baskets as a sideline. The cost per basket for producing x baskets is $\quad C=0.01 x^{2}-2 x+120$. How many baskets should they produce in order to minimize the cost per basket? What will their total cost be at that production level?
9) India is currently one of the world's fastest-growing countries. By 2040, the population of India will be larger than the population of China; by 2050, nearly one-third of the world's population will live in these two countries alone. The exponential function

$$
f(x)=573(1.027)^{x}
$$

models the population of India, $f(x)$, in millions, x years after 1974.
a) What was India's population in 1974?
b) Find $f(25)$ and its meaning.
c) Find India's population, to the nearest million, in the year 2025 as predicted by this function.
10) Hortense is investing $\$ 2600$ in an account where interest is calculated according to the formula $A=P(1+r)^{t}$ where P is the original principal, r is the interest rate and t is the time measured in years. If Hortense wants her money to grow to double in two years, what interest rate must the account have? (Approximate the answer to the nearest hundredth of a percent)

$$
\begin{gathered}
\text { (1) (a) } 4(x-3)^{2}+50=0 \\
4(x-3)^{2}=-50 \\
(x-3)^{2}=\frac{-50}{4} \\
\sqrt{(x-3)^{2}}=\sqrt{\frac{-50}{4}} \\
x-3= \pm \frac{\sqrt{-50}}{\sqrt{4}} \\
\left\lvert\, x=\geq \pm \frac{5 i \sqrt{2}}{2}\right.
\end{gathered}
$$

(b) $3 y^{2}-4 y+1=0$

1st leoding coefficient

$$
y^{2}-\frac{4}{3} y+\frac{1}{3}=0
$$

and isolate wertont

$$
y^{2}-\frac{4}{3} y=-\frac{1}{3}
$$

3.d firme mirsing term

$$
\begin{aligned}
& \left(\frac{1}{2} \cos \cdot y\right)^{2}=\left(\frac{1}{2} \cdot \frac{4}{3}\right)^{2}=\left(\frac{2}{3}\right)^{2}=\frac{4}{9} \\
& y^{2}-\frac{4}{3} y+\frac{4}{9}=\frac{1}{3}+\frac{4}{9} \\
& \left(y-\frac{2}{3}\right)^{2}=\frac{-3+4}{9} \\
& \left(y-\frac{2}{3}\right)^{2}=\frac{1}{9} \\
& \sqrt{\left(y-\frac{2}{3}\right)^{2}}=\sqrt{\frac{1}{9}} \\
& y-\frac{2}{3}= \pm \frac{1}{3}, y=\frac{2}{3}+\frac{1}{3}=1 \\
& y=\frac{2}{3} \pm \frac{1}{3}, \quad a x \\
& y=2-\frac{1}{3}=\frac{1}{3} \\
& y+\left\{1, \frac{1}{3}\right\}
\end{aligned}
$$

$$
\begin{aligned}
& \text { (c) } \frac{t^{2}}{5}-\frac{t}{3}=\frac{2}{3} \\
& 3 / \frac{t^{2}}{5}-\frac{t}{3}-\frac{2}{3}=0 \\
& L C D=15 \\
& 3 t^{2}-5 t-10=0 \\
& t=\frac{-6 \pm \sqrt{b^{2}-4 a c}}{2 a} \\
& a=3, b=-5, \quad c=-10
\end{aligned}
$$

$$
t=\frac{-(-5) \pm \sqrt{(-5)^{2}-4(3)(-10)}}{2(3)}
$$

$$
t=\frac{5 \pm \sqrt{75+120}}{6}
$$

$$
t=\frac{5 \pm \sqrt{145}}{6}
$$

(d) $2 x^{2}+x y+y^{2}=3$

$$
\begin{aligned}
& y^{2}+x y+2 x^{2}-3=0 \\
& y=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \\
& \text { aly, } b=x, c=2 x^{2}-3 \\
& y=\frac{-x \pm \sqrt{x^{2}-4(1)\left(2 x^{2}-3\right)}}{2(1)} \\
& y=\frac{-x \pm \sqrt{x^{2}-8 x^{2}+12}}{2} \\
& y=\frac{-x \pm \sqrt{12-7 x^{2}}}{2}
\end{aligned}
$$

(e) $2 x^{4}-3 x^{2}+1=0$
let $x^{2}=t$

$$
\begin{array}{ll}
2 t^{2}-3 t+1=0 \\
(2 t-1)(t-1)=0 \\
t=\frac{1}{2} & 0 x \\
x^{2}=\frac{1}{2} & x^{2}=1 \\
\sqrt{x^{2}}=\sqrt{\frac{1}{2}} & \sqrt{x^{2}}=\sqrt{1} \\
x= \pm \frac{1}{\sqrt{2}} & x= \pm 1 \\
x= \pm \frac{\sqrt{2}}{2} & \\
x \in\left\{ \pm \frac{\sqrt{2}}{2}, \pm 1\right\}
\end{array}
$$

(2) (a) $x^{2}-6 x+5 \leq 0$ let $y=x^{2}-6 x+5$
pooabola thot o peen cupwo.d

$$
x^{2}-6 x+5=0
$$

$$
\begin{gathered}
x-6 x+3)=0 \\
(x-2)(x-3)
\end{gathered}
$$

so $x^{2}-6 x+5 \leq 0$ wher

$$
\begin{aligned}
& \text { (b) } \frac{1}{x-5}<\frac{3}{2-x} \\
& \frac{1}{x-5}-\frac{3}{2-x}<0 \\
& \angle C D=(x-5)(2-x) \\
& \frac{2-x-3(x-5)}{(x-5)(2-x)}<0 \\
& \frac{2-x-3 x+15}{(x-5)(2-x)}<0 \\
& \frac{17-4 x}{(x-5)(2-x)}<0
\end{aligned}
$$

We nill study the sign of eoch froctor.

so $\frac{1}{x-5}<\frac{3}{2-x}$ when

$$
\left\lvert\, x \in(-\infty, 2) \cup\left(\frac{17}{4}, 5\right)\right.
$$

$x-n$

$$
x=2 \text { or } x=3
$$

$$
\mid x \in[2,3]
$$

(3)

$$
\begin{aligned}
& f(x)=3 x-1 \\
& g(x)=\frac{2-x}{x+1}
\end{aligned}
$$

(a)

$$
\text { a) } \begin{aligned}
& (g \circ f)(x)=g(f(x)) \\
= & g(3 x-1) \\
= & \frac{2-(3 x-1)}{(3 x-1)+1} \\
= & \frac{2-3 x+1}{3 x} \\
= & \frac{3-3 x}{3 x}=\frac{3(1-x)}{3 x} \\
& (g f)(x)=\frac{1-x}{x}
\end{aligned}
$$

$$
(b)(f \circ g)(1)=f(g(1))
$$

but $g(1)=\frac{2-1}{1+1}=\frac{1}{2}$

$$
\begin{aligned}
\text { so }(f \circ g)(1) & =f(g(1)) \\
& =-f\left(\frac{1}{2}\right) \\
& =3 \cdot \frac{1}{2}-1 \\
& =\frac{1}{2} \\
\text { o }(f \circ g)(1) & =\frac{1}{2}
\end{aligned}
$$

(c) $f(x)=3 x-1$

1st $\quad y=3 x-1$
and solve for x

$$
\begin{aligned}
& \text { solve px } x \\
& y+1=3 x=x=\frac{y+1}{3}
\end{aligned}
$$

3 in $\quad x \leftrightarrow y$

$$
y=\frac{x+1}{3}
$$

d $f^{-1}(x)=\frac{x+1}{3}$
(d) $g(x)=\frac{2-x}{x+1}$

1st $y=\frac{2-x}{x+1}$
2nd solve pr x

$$
\begin{aligned}
& y(x+1)=2-x \\
& y x+y=2-x \\
& y x+x=2-y \\
& x(y+1)=2-y \\
& x=\frac{2-y}{y+1}
\end{aligned}
$$

3nd $x \rightarrow, y$

$$
\begin{aligned}
& y=\frac{2-x}{x+1} \\
& 10 g^{-1}(x)=\frac{2-x}{x+1}
\end{aligned}
$$

(4) (a) $3 \ln x-5 \ln y+2 \ln z=$

$$
\begin{aligned}
& \text { 4) }
\end{aligned} \begin{aligned}
& \\
& = \\
& =\ln x^{3}-\ln y^{5}+\ln z^{2} \\
& = \\
& = \\
& =\ln \frac{x^{3}}{y^{5}}+\ln \left(\frac{x^{3} z^{2}}{y^{5}}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \text { (b) } \frac{1}{3}\left(\log _{5} x-\log _{5} y\right)+3 \log _{5}^{-4}(x+2)= \\
& =\frac{1}{3}\left(\log _{5} \frac{x}{y}\right)+\log _{5}(x+2)^{3} \\
& =\log _{5}\left(\frac{x}{y}\right)^{\frac{1}{3}}+\log _{5}(x+2)^{3} \\
& =\log _{5}\left(\frac{x^{\frac{1}{3}}}{y^{3}} \cdot(x+2)^{3}\right) \\
& =\log _{5}\left(\frac{\sqrt[3]{x}(x+2)^{3}}{\sqrt[3]{y}}\right)
\end{aligned}
$$

$$
\text { (c) } \begin{aligned}
& \log _{3} 405-\log _{3} 5+\log 5+\log 2 \\
= & \log _{3}\left(\frac{405}{5}+\log (5) \cdot 2\right. \\
= & \log _{3} 81+\log 10 \\
= & 4+1=5
\end{aligned}
$$

(d) $\log _{10}\left(\log _{3}\left(\log _{5} 125\right)\right)=$

$$
\begin{aligned}
& =\log _{10}\left(\log _{3} 3\right) \\
& =\log _{10} 1=0
\end{aligned}
$$

Dmain: $x \in \mathbb{R}$
Rause $y \in(0, \infty)$ H.A. $y=0$
(b) $g(x)=\log _{2} x \log _{2} \frac{1}{2}=-1$

V.A. $x=0$

Dmain $x \in(0, \infty)$
Rouge $y \in \mathbb{R}$
J.A. $x=0$
(6) $y=-2 x^{2}+3 x+2$
(a) vorabola that ofens downward $\quad(a=-2<0)$
(b) y-n: let $x=0$, then $y=2$ $(0,2)$
(c) Vertex

$$
\begin{aligned}
x_{v} & =\frac{-b}{2 a}=\frac{-3}{2(-2)}=\frac{3}{4} \\
y_{v} & =-2 \cdot\left(\frac{3}{4}\right)^{2}+3 \cdot \frac{3}{4}+2 \\
y_{v} & =-\frac{9}{8}+\frac{9}{4}+2 \\
& =+\frac{9}{8}+2=\frac{25}{8} \\
& V\left(\frac{3}{4}, \frac{25}{8}\right)
\end{aligned}
$$

(4)

$$
\begin{aligned}
& y=a\left(x-x_{v}\right)^{2}+y_{v} \\
& y=-2\left(x-\frac{3}{4}\right)^{2}+\frac{25}{5}
\end{aligned}
$$

(7) (a) Fols
$\log (a+b) \neq \log a \log b$
(d) $x-n$ let $y=0$, then

$$
\begin{aligned}
& -2 x^{2}+3 x+2=0 \quad(1-1) \\
& 2 x^{2}-3 x-2=0 \\
& (2 x+1)(x-2)=0 \\
& 2 x+1=0 \quad \text { on } \quad x-2=0 \\
& x=\frac{-1}{2} \\
& x-n:\left(-\frac{1}{2}, 0\right) \text { end }(2,8)
\end{aligned}
$$

(e) Domain: $x \in \mathbb{R}$
(7) Rauge: $y \in\left(-\infty, \frac{25}{8}\right]$
(g) $-2 x^{2}+3 x+2>0$ uher $x \in\left(-\frac{1}{2}, 2\right)$
(8) $C=0.01 x^{2}-2 x+120$
ieprests a josobola opwing unword \cup
Thre for, the suinismnn occurs at the wertex
$V\left(x_{v}, C_{v}\right)$
$x_{v}=\frac{-b}{2 a}=\frac{-(-2)}{2(0.01)}=100$ bochet
$C_{V}=0.01(100)^{2}-\alpha(100)+120$
$C_{V}=100-200+120=20 \mathrm{t} / 60$ ket
They diould purdece
100 bakets $m i$ onder to minnisuibe the cot/res poslet
The toxe cost at thot vurduction luvel will te $C=100$ bodkt. $(20 \phi / b 00 / \mathrm{cot})$ $C_{\text {total }}=2008$
(9) $f(x)=573(1.27)^{x}$
$x=$ yeass effer 1974
$f(x)=$ population (si millins)
a) 1974: $x=0$
$f(0)=573$ suillix peovele
(populatin in 1974)
b) $f(25)=573(1.027)^{25}$

25 yeas frum 1974-in 1999India's popul otion wos III5.36 swillix people
(c) 2025 :

$$
\begin{aligned}
& \text { (c) } 2025: \\
& 2025-1974=51, \text { so } x=51 \\
& f(51)=573(1.027)^{51} \\
& f(51)=2229.7 \text { millin } \\
& \text { In } 2025 \text { the voquldin }
\end{aligned}
$$ will te alout 2230 willin poople.

(t) $A=P(1+r)^{t}$

$$
\begin{aligned}
P & =2600 \ngtr \\
A & =2(2600)^{\prime}-5200 \ngtr \\
t & =2 \\
r & =? \\
5200 & =2600(1+\sigma)^{2} \\
(1+r)^{2} & =\frac{5200}{2600} \\
(1+r)^{2} & =2
\end{aligned}
$$

$\left\{\begin{array}{l}1+r=\sqrt{2} \text { or } \\ 1+r=-\sqrt{2} \text { or }\end{array}\right.$

$$
1+r=-\sqrt{2}
$$

$r=-1+\sqrt{2}$ or
$r=-1-\sqrt{2}$ (not jornte) r sust te pusitive
so $r \approx 0.4142$
The miterest dioxel be 41.42%

