REVIEW TEST 1 - Chapters 1, 2, and 3

To prepare for the test, study the following:

CHAPTER 1

- All exercises done in class.

- Handout Review Chapter 1 – Exercises # 5, 12, 13 (see website for handout).

- Homework #1 – Section 1.4 - All homework problems

CHAPTER 2 - Functions and Algebra of Functions

- All exercises done in class.

- Handout Sections 2.1 & 2.2 – All exercises and examples

- Handout Sections 2.3 & 2.4 – All exercises

- Homework #2 - All homework problems

More practice:

1) Which of the following tables define the second variable as a function of the first variable? Explain why or why not.

X	t
-1	2
0	9
1	-2
0	-3
-1	5

Adjusted gross	Tax
income (I)	bracket
	(T)
0 - 2479	0%
2480 - 3669	11%
3670 - 4749	12%
4750 - 7009	14%
7010 - 9169	15%
9170 - 11,649	16%
11,650 - 13,919	18%

Temperature	Humidity
(T)	<i>(h)</i>
Jan.1 34° F	42%
Jan.2 36° F	44%
Jan 3 35° F	47%
Jan 4 29° F	50%
Jan5 31° F	52%
Jan.6 35° F	51%
Jan.7 34° F	49%

2)

a) What is the definition of a function?

b) Give an example of a function (use function notation):

c) What is the domain of a function (the definition) ? In particular, what is the domain of your function (your example from part b) ?

d) What is the range of a function (the definition)? In particular, what is the range of your function (your example from part b)?

3) Let
$$f(x) = \frac{5}{(x-2)^2}$$
, $g(x) = \frac{1}{36x^3}$, $G(x) = \sqrt{7x-9}$, and $h(x) = \frac{7x+3}{4(1-x)}$.

Find the following and simplify (don't give approximate answers) :

a) The domain of each function.

b)
$$g(a+1)$$
, $g(a)+1$, $h\left(\frac{5}{7}\right)$, $f(x+2)$, and $h(x-1)$

4) Let
$$f(x) = \begin{cases} 1 - x^2, & x \le 0 \\ 2x + 1, & x > 0 \end{cases}$$
. a) Evaluate $f(-2)$ and $f(1)$.

5) If $f(x) = x^2 + 2x - 1$ and g(x) = 2x - 3, find each of the following: a) what is the domain of f and g; b) What is the range of g? d) f(g(2)); e) Find (f+g)(x) f) (fg)(x) g) (f-g)(3) 6) Which of the graphs represent y as a function of x? Explain why or why not. Give the domain and range for each function.

7) The value of a stock varies during the course of any trading day. The price per share "P" of a certain stock is shown on the graph below for a particular trading day. Note "t" represents any time between 8 am and 2 pm.

a) Is "t" (the time of the day) a function of "P" (the price per share)? Is "P" a function of "t"? Explain using the definition of function.

Using the graph, estimate the answers to the following questions (Use the correct units).

- b) What is the domain? What is the range?
- c) For what value(s) of "t" does P(t)=8 and what does it mean in practical terms?
- d) What is P(11) and what does it mean in practical terms?
- e) For what value(s) of "t" is P(t) >5.50?

8) Find
$$f + g$$
, $f - g$, fg , and f/g :
a) $f(x) = \frac{1}{x+1}$, $g(x) = \frac{x}{x+1}$.; b) $f(x) = x^3 + 2x^2$, $g(x) = 3x^2 - 1$

b

-10

С

d ⁵

-5

11) Let $s(t) = 11t^2 + t + 100$ be the position, in miles, of a car driving on a straight road at time *t*, in hours.

The card's velocity at any time t is given by v(t) = 22t + 1.

- a) Use function notation to express the car's position after 2 hours. Where is the car then?
- b) Use function notation to express the question, "When is the car going 65 mph?"
- c) Where is the car when it is going 67 mph?

13) If V is the value of a computer equipment t years after the equipment is purchased, find a formula for V in terms of t. Assume that the value of the new equipment is 20,000 and that the value drops to 0 after five years have elapsed.

14) Suppose you can type four pages in 50 minutes and nine pages in an hour and forty minutes.

- a) Find a linear function for the number of pages produced, *p*, as a function of time, *t*. If time is measured in minutes, what values of *t* make sense in this example?
- b) How many pages can be typed in two hours?
- c) Interpret the slope of the function in practical terms.
- d) Solve the function in (a) for time as a function of pages.
- e) How long will it take to type a 15 page paper?

CHAPTER 3 Systems of Linear Equations

- All exercises done in class.
- Homework #3 All homework problems

More practice:

1) The cost in dollars of renting a car for one day from three different rental agencies and driving it d miles is given by the following equations:

$$C_1 = 50 + 0.10d$$

$$C_2 = 30 + 0.20d$$

$$C_3 = 0.50d$$

- a) Explain the meaning of each equation.
- b) Graph all equations on the same coordinate system. Label the axes and all points used.
- c) Which agency is cheapest?

ANSWERS:

Chapter 2:

(1)
$$2^{nd}$$
; (3) a) $D_g = \mathbb{R} \setminus \{0\}, D_h = \mathbb{R} \setminus \{1\}$; b) $g(a) + 1 = \frac{1 + 36a^3}{36a^3}, g(a+1) = \frac{1}{36(a+1)^3}$;

(4) f(-2) = -3, f(1) = 3; (5) a) all real numbers; b) all real numbers; d) 1. (6) 2^{nd} , 3^{rd} , and 5^{th} represent y as a function of x.