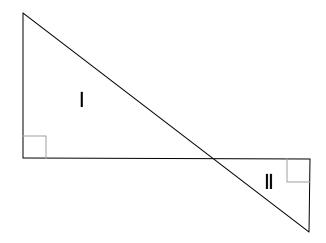
TEST #3 @ 140 points

Write in a neat and organized fashion. Use a straightedge and compass for your drawings. Write all solutions and proofs on separate paper. Label each exercise.

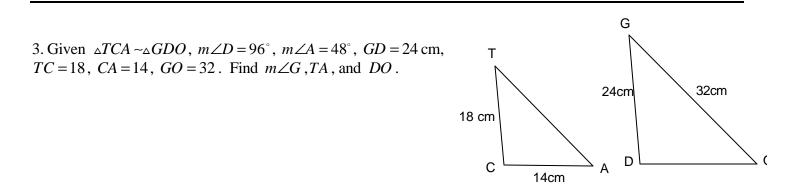
1. a) State whether $\triangle I \sim \triangle II$.

b) If so, write what case of similarity applies.

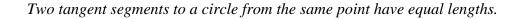


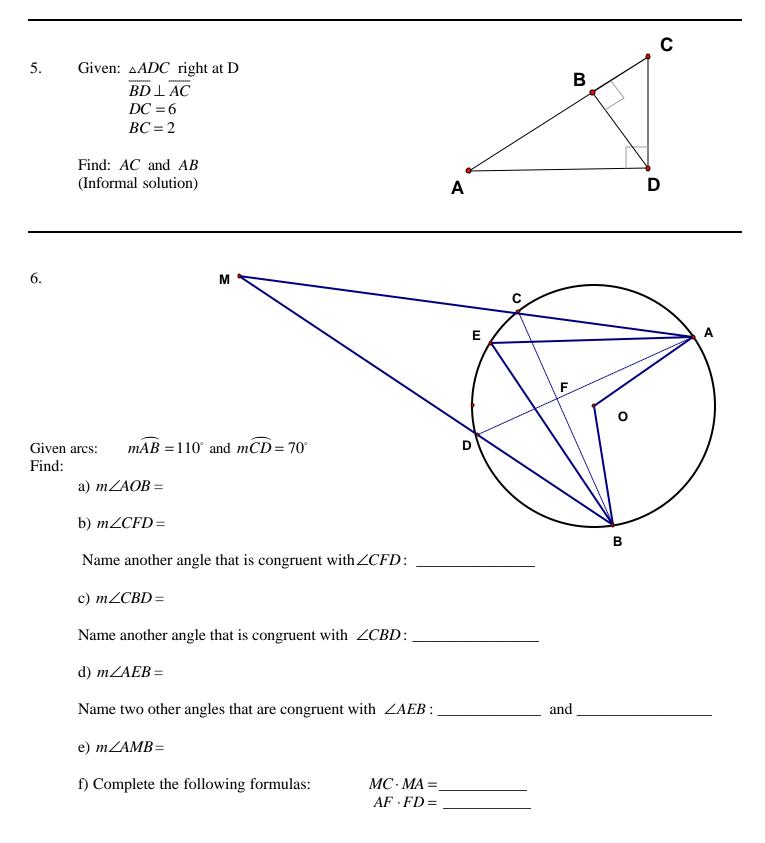
2. a) <u>The Triangle Proportionality Theorem</u>

- Draw a scalene triangle ABC.
- Draw a segment \overline{MN} parallel to \overline{BC} , where M is on \overline{AB} and N is on \overline{AC} .
- Write everything you know in this given situation; that is: What triangles are similar? What sides are proportional? What other segments are proportional? To receive full credit, use math notation pertinent to your drawing .
- b) Draw a right triangle.
 - Draw the altitude to the hypotenuse.
 - Write a formula for the altitude.
 - Write a formula for each leg.
- c) Draw a right triangle.
 - Write the Pythagorean theorem. To receive full credit, use math notation pertinent to your drawing .
- d) Draw a triangle and an angle bisector .
 - What conclusion can be drawn from the Triangle Angle Bisector Theorem? To receive full credit, use math notation pertinent to your drawing



4. Prove the following theorem using a formal proof. Make a drawing and state the hypothesis (given) and conclusion(to prove) using math notation pertinent to your drawing – that is, do not state the hypothesis and conclusion in words!

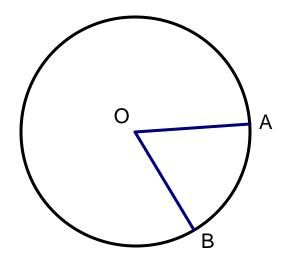




7. Given $\bigcirc O$ with $m \angle AOB = 50^{\circ}$ and OA = 10in,

find the following (exact answers) and use correct units:

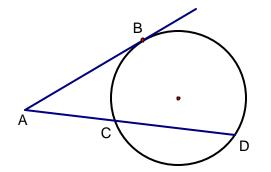
- a) $m\widehat{AB}$
- b) $l\widehat{AB}$
- c) Circumference of the circle
- d) Area of the circle
- e) Area of the sector AOB



8. Find the area of an equilateral triangle with sides measuring 10 ft. (Do not just write an answer. Justify your steps).

- 9. a) Draw a right triangle ABC with right angle C.
 - b) Draw the altitude to hypotenuse CD.
 - c) Draw the median to hypotenuse CE.
 - e) If AB = 50 cm and BD = 32 cm, find BC.
 - f) If CE is 5 ft, find AB.

10

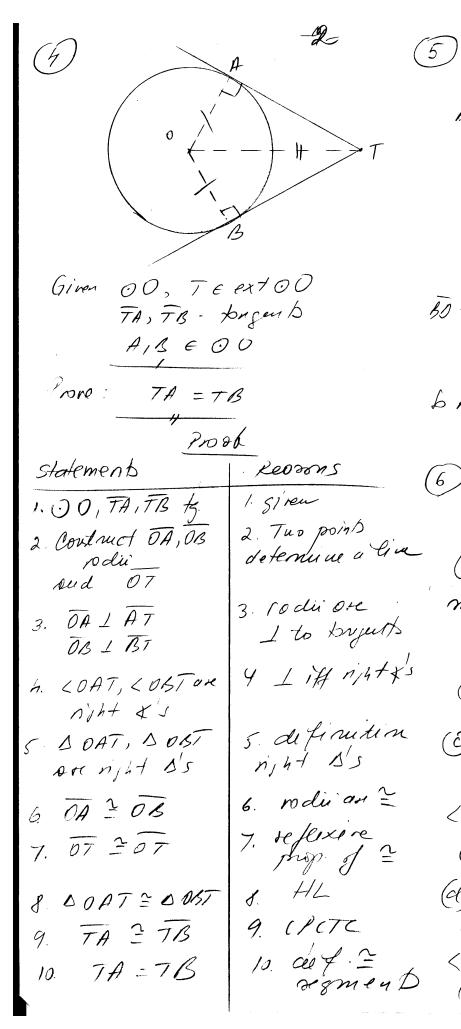


Given: \overline{AB} tangent to the circle at B AB=8, AD=12

Find: AC

MATH61 TETT 3- JOUIDONS () yes, by the core AA. (one poir of nectical augles) two n'nt augles $(AB)^2 + (AC)^2 = (BC)^2$ đ 2) a MN 11BC D DABC, BD-ougle tracks r & AMN ~ & ABC $\frac{AM}{AB} = \frac{AN}{AC} = \frac{MN}{BC}$ $\frac{AO}{AC} = \frac{AB}{BC}$ $\frac{AM}{MR} = \frac{AN}{NC}$ Solutin ATCAN AGOO => $\frac{TC}{GD} = \frac{CA}{OO} = \frac{TA}{GO}$ $\frac{18}{24} = \frac{14}{20} = \frac{74}{32}$ $\frac{18}{24} = \frac{14}{10} = 0 = 0 = \frac{24.14}{18_2} = \frac{56}{3}$ ß AASC, <A- Nut 00= 18-2 $\frac{18}{34} = \frac{TA}{82} = 7 TA = \frac{3}{24} \frac{18.32}{244} = 24$ AD. petitude (AD L BC) AD² = CD.DB TA = 24Alo AB² = BD. BC $\Delta TCA \sim \Delta GO O =>$ <A = <0 => M<0= 480 AC= COBC In & DOG: M<D+M<D+M 6= 1800 to mcG = 180° - 48° - 96°

MCG= 36°



A BCD: apply Pythey Doese H, $BC^2 + BO^2 = DC^2$ $BO^2 = DC^2 - BC^2$ b0' = 36 - 4 = 32BO = V32 = V16.2 = 412 10=4/2) BO - allitude to hypotenux BO² = BC·A13 32 = 2. AB = AB=16) bAC=AB+BC => AC=18 (6) (a) $m (AOB = MAB = 1/0^{\circ})$ (cent rol &) 6 mccID= = (mcD+mAB) $m(CFD = \frac{1}{2}(180^{\circ}) = 90^{\circ}$ $\langle CTO \cong \langle BFA \rangle$ (unitical $\not \leq S$) $\bigcirc m(CBD = \frac{1}{2}mCD = 35^{\circ}$ (user hel &) < CBO ≈ < CAO (mbrun te the source Aco) (d) $m (AEB = \frac{1}{2} m AB = 55^{\circ}$ (united \$) <AEB = < ACB = < ADB (mombe the sour ore AB)

Soluti n

$$\begin{array}{l} -3 - \\ (E) \ m(AHB) = \frac{1}{2} \left(mAB - m(D) \right) \\ m(AHB) = \frac{1}{2} \left(110^{\circ} - 70^{\circ} \right) = 20^{\circ} \\ (F) \ M(C - MA) = M(D - MAB) \\ AT - TO = CT - TB \\ (F) \ M(AB) = M < AOB (cult - mol) \\ mAB = 50^{\circ} \\ (F) \ \frac{P(AB)}{50^{\circ}} = \frac{CO}{260^{\circ}} \\ \frac{P(AB)}{50^{\circ}} = \frac{2T \cdot 10 in}{360^{\circ}} \\ P(AB) = \frac{2T \cdot 10 in}{360^{\circ}} \\ P(AB) = \frac{2T \cdot 10 in}{360^{\circ}} \\ P(AB) = \frac{25T}{360^{\circ}} in \\ (C) \ C = 2T - 10 (10 in) \\ C = 20T in \\ (A) \ A = T - 10 (10 in) \\ A = 100T in^{2} \\ A =$$

8
N

$$R$$

Given ΔMNP equilateral
 $MN = NP = PM = 10$ [4
The A Free 10 MNP
 $A = \frac{1}{2} (6an) \cdot hp^{2} m^{2}$
 $MR = \frac{1}{2} \cdot NP \cdot MR$
 $\Delta MRP : PR = \frac{1}{2} NP = 5$ [4
 $MR = 5\sqrt{3}$ [4]
 $A = \frac{1}{2} \cdot 10 \cdot 5\sqrt{3} = 25\sqrt{3}$ [4]
 $A = \frac{1}{2} \cdot 10 \cdot 5\sqrt{3} = 25\sqrt{3}$ [4]

.

-7_ É ß a) DASC night at C 6) TO I AB, TO-alt c) E-midroint of AB, to CE = median e) AB = 50 cm BD = 32 cm find BC =? BC= BD. AB BC² = (32 cm)/50 cm) BC = V32.50 = V16.2.25.2 BC = 4.5.2. to BC = 40 cm f) CE = 5/t find AB=? $CE = \frac{1}{2}AB = 1$ AB= 20E = 215 H) AB= 10 A

(O) Lotution AB² = AC · AD $g^{2} = A(.12)$ $AC = \frac{64}{12} = \frac{16}{3}$

 $AC = \frac{16}{3}$