TEST \#3 @ 140 points

Write in a neat and organized fashion. Use a straightedge and compass for your drawings. Write all solutions and proofs on separate paper. Label each exercise.

1. a) State whether $\Delta I \sim \Delta I I$.
b) If so, write what case of similarity applies.

2. a) The Triangle Proportionality Theorem

- Draw a scalene triangle ABC.
- Draw a segment $\overline{M N}$ parallel to $\overline{B C}$, where M is on $\overline{A B}$ and N is on $\overline{A C}$.
- Write everything you know in this given situation; that is: What triangles are similar? What sides are proportional? What other segments are proportional? To receive full credit, use math notation pertinent to your drawing .
b) - Draw a right triangle.
- Draw the altitude to the hypotenuse.
- Write a formula for the altitude.
- Write a formula for each leg.
c) Draw a right triangle.
- Write the Pythagorean theorem. To receive full credit, use math notation pertinent to your drawing .
d) - Draw a triangle and an angle bisector .
- What conclusion can be drawn from the Triangle Angle Bisector Theorem? To receive full credit, use math notation pertinent to your drawing

3. Given $\triangle T C A \sim \triangle G D O, m \angle D=96^{\circ}, m \angle A=48^{\circ}, G D=24 \mathrm{~cm}$, $T C=18, C A=14, G O=32$. Find $m \angle G, T A$, and $D O$.

4. Prove the following theorem using a formal proof. Make a drawing and state the hypothesis (given) and conclusion(to prove) using math notation pertinent to your drawing - that is, do not state the hypothesis and conclusion in words!

Two tangent segments to a circle from the same point have equal lengths.
5. Given: $\triangle A D C$ right at D
$\overline{B D} \perp \overline{A C}$
$D C=6$
$B C=2$

Find: $A C$ and $A B$
(Informal solution)

6.

Given arcs: $\quad m \overparen{A B}=110^{\circ}$ and $m \overparen{C D}=70^{\circ}$
Find:
a) $m \angle A O B=$
b) $m \angle C F D=$

Name another angle that is congruent with $\angle C F D$: \qquad
c) $m \angle C B D=$

Name another angle that is congruent with $\angle C B D$: \qquad
d) $m \angle A E B=$

Name two other angles that are congruent with $\angle A E B$: \qquad and \qquad
e) $m \angle A M B=$
f) Complete the following formulas:

$$
\begin{aligned}
M C \cdot M A & = \\
A F \cdot F D & =
\end{aligned}
$$

7. Given $\odot O$ with $m \angle A O B=50^{\circ}$ and $O A=10$ in ,
find the following (exact answers) and use correct units:
a) $m \overparen{A B}$
b) $l \overparen{A B}$
c) Circumference of the circle
d) Area of the circle
e) Area of the sector $A O B$

8. Find the area of an equilateral triangle with sides measuring 10 ft . (Do not just write an answer. Justify your steps).
9. a) Draw a right triangle ABC with right angle C .
b) Draw the altitude to hypotenuse CD.
c) Draw the median to hypotenuse CE.
e) If $\mathrm{AB}=50 \mathrm{~cm}$ and $\mathrm{BD}=32 \mathrm{~cm}$, find BC .
f) If $C E$ is 5 ft , find AB .

10

Given: $\overline{A B}$ tangent to the circle at B $\mathrm{AB}=8, \mathrm{AD}=12$

Find: AC

1EH 3- よocurtions
(1) Yes, by the cose AA
(one porir of partical onfles) two rist ougles
(c)

(2)
(a)

- $\triangle A B C$
(d)

- $\triangle A B C, \overline{B D}$-ougle tirector
- $\frac{A D}{D C}=\frac{A B}{B C}$
(3)

Solution

$$
\begin{aligned}
& \triangle T C A \sim \triangle G D O \Rightarrow \\
& \frac{T C}{G D}=\frac{C A}{D 0}=\frac{T A}{G 0} \\
& \frac{18}{24}=\frac{14}{D 0}=\frac{T A}{32} \\
& \frac{18}{24}=\frac{14}{D 0} \Rightarrow D O=\frac{24 \cdot 14}{1 D_{3}}=\frac{56}{3} \\
& D 0=18 \frac{2}{3}
\end{aligned}
$$

- $\overline{A D}$ - eltitude $(\overline{A D} \perp \overline{B C})$
- $A O^{2}=C D . D B$
- $A B^{2}=B D \cdot B C$

$$
A C^{2}=C D \cdot B C
$$

Aso

$$
T A=24
$$

$$
\begin{aligned}
& \triangle T C A \sim \triangle G O O \Rightarrow \\
& \angle A \cong \angle O=>M \angle O=48^{\circ} \\
& \text { in } \triangle D O G: m \angle O+m \angle D+M G=180^{\circ} \\
& \text { कo } m C G=180^{\circ}-48^{\circ}-96^{\circ} \\
& m \angle G=36^{\circ}
\end{aligned}
$$

(4)

Given 00 , T ϵ ext 00

$$
\overline{T A}, \overline{T B} \cdot \text { torgenb }
$$

$$
A, B \in O O
$$

pre: $\quad T A=T B$
Prosh

(5) Solution $\triangle B C D$: apply Pythoporean the

$$
\begin{aligned}
& B C^{2}+B O^{2}=D C^{2} \\
& B O^{2}=D C^{2}-B C^{2} \\
& B O^{2}=36-4=32 \\
& B O=\sqrt{32}=\sqrt{16 \cdot 2}=4 \sqrt{2} \\
& B O=4 \sqrt{2}
\end{aligned}
$$

BO - altitude to uyvoti nux

$$
\begin{aligned}
& B O^{2}=B C \cdot A B \\
& 32=2 \cdot A B \Rightarrow A B=16
\end{aligned}
$$

$$
6 A C=A B+B C \Rightarrow A C=18
$$

(6) (a) $m \angle A O B=m A B=110^{\circ}$ (cunt dol $*$)
(6) $m \angle C F D=\frac{1}{2}(m(\bar{B}+m \overparen{A B})$

$$
m \angle C F D=\frac{1}{2}\left(180^{\circ}\right)=90^{\circ}
$$

$$
\angle C I D \cong \angle B F A
$$

$$
\begin{array}{ccc}
\text { uertical } & * S
\end{array}
$$

(c) $m \angle C B D=\frac{1}{2} m \quad \widehat{C D}=35^{\circ}$ (mionihl ϕ)
$\angle C B O \cong \angle C A O$
(mbiente the souce ACD)
(d) $m \angle A \in B=\frac{1}{2} m \quad \overparen{A B}=55^{\circ}$
(uiscuts) 5)
$\angle A E B \cong \angle A C B \cong \angle A D B$ (mamike the sous ore ABS)

$$
\begin{aligned}
& \text { (@) } m \angle A H B=\frac{1}{2}(m \overparen{A B}-m \overparen{C D}) \\
& m \angle A B B=\frac{1}{2}\left(110^{\circ}-70^{\circ}\right)=20^{\circ}
\end{aligned}
$$

(f) $M C \cdot M A=M D \cdot M B$

$$
A F \cdot F D=C F \cdot F B
$$

(7) (a) $m \overparen{A B}=m \angle A O B$ (cut ind)

$$
m \overrightarrow{A B}=50^{\circ}
$$

(b) $\frac{l(\hat{A B})}{50^{\circ}}=\frac{C \odot}{360^{\circ}}$

$$
\frac{l(\overline{A B})}{50^{\circ}}=\frac{2 \pi \cdot 10 \mathrm{in}}{360^{\circ}}
$$

$$
l(\overline{A B})=\frac{2 \pi \cdot d i n \cdot 50^{\circ}}{360^{\circ}}=\frac{50 \pi}{18}
$$

$$
l(\overline{A B})=\frac{25 \pi}{9} \text { in }
$$

(c)

$$
\begin{aligned}
& C=2 \pi r=1710 \mathrm{in} \\
& C=20 \pi \mathrm{in}
\end{aligned}
$$

(d) $A=\pi r^{2}=y(10 n)^{2}$

$$
A=105 \mathrm{in}^{2}
$$

(e) $\frac{A \text { (AOS }}{50^{\circ}}=\frac{A C}{360^{\circ}}$

$$
\begin{aligned}
& A(A O B)=\frac{\left(100 \% \cdot i^{2}\right) \cdot 50^{\circ}}{360^{\circ}} \\
& A(A O B)=\frac{125 \pi}{9} \mathrm{in}^{2}
\end{aligned}
$$

(8)

Given $\triangle M N D$ equilaterol

$$
M N=N D=P M=10 \mathrm{ft}
$$

Ind Ara / \triangle MND
Soluti in
I.t A = resa of $\triangle M M P$
$A=\frac{1}{2}(b a x)$ her
Let $\frac{2}{M R} \perp \overline{N D}$
Tren $A=\frac{1}{2} \cdot N P \cdot M R$
\triangle MRP.

$$
\begin{gathered}
\triangle M R P: P R=\frac{1}{2} N P=5 \mu t \\
M P=10 \mu A \\
P R^{2}+R M^{2}=\mu_{1}^{2} \Rightarrow \\
M R^{2}=100-25=75 \\
M R=5 \sqrt{3} H t \\
A=\frac{1}{2} \cdot 10 \cdot 5 \sqrt{3}=25 \sqrt{3} \mu^{2} \\
A=25 \sqrt{3} \mu^{2}
\end{gathered}
$$

(9)

a) $\triangle A B C$ ni,ht at C
b) $\overline{C D} \equiv \overline{A B}, \overline{C D}$-alt
(10) folutin

$$
\begin{aligned}
& A B^{2}=A C \cdot A D \\
& 8^{2}=A C \cdot 12 \\
& A C=\frac{64^{14}}{12}=\frac{16}{3} \\
& A C=\frac{16}{3}
\end{aligned}
$$

c) E-nidpont of $\overline{A B}$, so $\overline{C E}=$ medion
e)

$$
\begin{aligned}
& A B=50 \mathrm{~cm} \\
& B D=32 \mathrm{~cm}
\end{aligned}
$$

$$
\frac{\text { Mine } B C=?}{4}
$$

$B C^{2}=B O \cdot A B$
$\left.B C^{2}=(32 \mathrm{~cm}) / 50 \mathrm{~cm}\right)$
$B C=\sqrt{32.50}=\sqrt{16.2 .25 .2}$
$B C=4 \cdot 5 \cdot 2$.
do $B C=40 \mathrm{~cm}$
f) $C E=5 / t$
fond $A B=$?
$C E=\frac{1}{2} A B \quad \Rightarrow$
$A B=2$ OE $=2(5 \mathrm{fP})$

$$
A B=101 P
$$

