TEST \#2 @ 140 points

Write in a neat and organized fashion. Use a pencil. Use a straightedge and compass for your drawings. Write all the answers and proofs on separate paper.

1) Do the following:
a) - Draw a scalene triangle and mark an exterior angle.

- Write an equation that gives the measure of the exterior angle in terms of one interior angle.
- Write an equation that gives the measure of the exterior angle in terms of two interior angles of the triangle.
b) - Draw a scalene triangle.
- Draw a median for the triangle and explain (mathematically) what it means.
- Draw an altitude for the triangle and explain (mathematically) what it means.
- Draw an angle bisector for the triangle and explain (mathematically) what it means.
c) The Triangle Proportionality Theorem
- Draw a scalene triangle ABC.
- Draw the segment $\overline{M N}$, where M is the midpoint of $\overline{A B}$ and N is the midpoint of $\overline{A C}$.
- What do you know about $\overline{M N}$?
d) - Draw a trapezoid.
- Draw its median.
- What do you know about the median of a trapezoid? To receive full credit, use math notation pertinent to your drawing .
e) - Draw a parallelogram.
- Write everything you know about the sides, angles, and diagonals of a parallelogram. To receive full credit, use math notation pertinent to your drawing .

2) "If two coplanar lines are each perpendicular to a third line, then these lines are parallel to each other."
a) Make a drawing.
b) Write the hypothesis and conclusion using math notation pertinent to your drawing.
c) Write an indirect proof.
3) "If both pairs of opposite sides of a quadrilateral are congruent, then the quadrilateral is a parallelogram"
a) Make a drawing.
b) Write the hypothesis and conclusion using math notation pertinent to your drawing.
c) Write a formal proof.
4) " In a rhombus the diagonals are perpendicular."
a) Write the above statement in an "if...then..." form.
b) What is the definition of a rhombus?
c) Make a drawing to illustrate the given statement.
d) Write the hypothesis and conclusion of the given statement using math notation pertinent to your drawing.
e) Write a formal proof of the given statement.
5)

$$
\begin{array}{ll}
\text { Given } & \angle 1 \cong \angle 2 \\
& M N \cong \overline{Q P}
\end{array}
$$

Prove $\overline{M Q} \| \overline{N P} \quad$ (formal proof)

$$
\begin{array}{ll}
\text { 6) Given: } & \overline{A B} \cong \overline{C B} \\
& \angle A \cong \angle C \\
& \angle B \text { right angle } \\
\text { Prove: } & \overline{B D} \cong \overline{B E}
\end{array}
$$

(formal proof)

7) In a triangle MNP , A is the midpoint of side MN and B is the midpoint of side MP . If $\mathrm{AB}=5 \mathrm{in}$, find NP . (informal solution).
8) Let CEMF be a trapezoid with bases $C E=5 x+3$ and $M F=13 x-1$. If the median $A B=6 x+7$, find x. (informal solution)
9) Given: $\quad m \| n$

$$
\overline{A B} \cong \overline{D E}
$$

Prove: $\quad \triangle C B A \cong \triangle C D E$
(formal proof)

10) Answer TRUE or FALSE. If true, justify your answer. If false, justify the answer or draw a counterexample.
a) The diagonals of a parallelogram are congruent.
b) Any rhombus is a parallelogram.
c) Any parallelogram is a rhombus.
d) If three angles of one triangle are congruent with three angles of a second triangle, then the two triangles are congruent.
e) Triangles can be proved congruent using SSA.
f) If two angles of one triangle are congruent to two angles of a second triangle, the third angles are not necessarily congruent.
g) If two angles of a quadrilateral are right angles, the quadrilateral is a rectangle.

Extra credit ;

@ 3 points

We have proved the following statement as a theorem:
"In a plane, two lines perpendicular to a third line are parallel to each other."
Would this statement be true if
a) the first three words were omitted? Why?
b) the words "perpendicular" and "parallel" were interchanged? Why?
c) the word "perpendicular" were changed to "parallel"? Why?
@ 2 points
Find the measure of the indicated angle in the figure below. Justify your answer.

Math 61
(1)

(a) $\triangle A B C, \angle C A E$-exteri3r

$$
\begin{aligned}
& m \angle C A E=180^{\circ}-m \angle B A C \\
& m \angle C A E=m \angle A B C+m \angle A C B
\end{aligned}
$$

(b)

$\triangle A B C$ with
$\overline{B M}$-median: It connects the vertex f mith the midpoint Mr of

$\overline{A N}$-oltitude: $\overline{A N} \underset{B C}{\perp}$
$\overline{C P}$ augle bisector

$$
\angle A C P \cong \angle B C P
$$

$\triangle A B C$,
$M=$ uidionin $\overline{A B}$
$N=m i j p$ ant A_{C}
Then MAX IIS ad MN= $\angle R C$
(d)

ABCO trope toid
$\overline{M N}$-wedian ($H=$ midpoint $\overline{A D}$ $N=$ miajosint $S C$
Then $\overline{M N}\|\overline{A B}\| \overline{D C}$
sad MN= $\sum^{\prime}(A B+O C)$
(e)

ABCO porallelognour
sides: $\overline{A B} \| \overline{D C}, \overline{A B} \cong \overline{O C}$

$$
\overline{A D} \| \overline{B C}, \overline{A O} \cong \overline{B C}
$$

ansles: $\quad \angle A \cong<C$

$$
\angle B \cong<0
$$

$\angle A$ and $<C$ = drepplemecile ${ }^{\prime}$ y
$\angle A$ und $C B$ = mpilementory
$\angle B$ and $\angle C=$ smplementany
$\angle C$ and $\angle D=$ Sypplementay.
$m \angle A+m \angle B+m \angle C+m \subset D=360^{\circ}$
diasonols: $\overline{A C}, \overline{B O}$-diagonols
with $\overline{A C} A \overline{B O}=0$
Then $D=$ midposist of $\overline{A C}$
O= welport of $\overline{B O}$
In geues, $A C \neq B D$
(2)
a)

b)

Given: $\quad 1,1 g$

$$
l_{2}<g
$$

$$
l_{1}, l_{2}=\text { coplanor }
$$

Prove: $l_{1} / 1 l_{2}$
c) Lidiact proof:
$\left.\begin{array}{l}\text { Assume } l_{1} X l_{2} . \\ \text { But } l_{1}, l_{2}: \text { coplovor }\end{array}\right\} \Rightarrow$
$\Rightarrow l$, sud $l_{\text {? }}$ have a comnoru point, At
We have:

- aline, g
- appoint, A
- sud two lines, l, owl l_{2}, each feryundicula to g,
parsing through" A
This contradicts the Portulet that states that there. 7. ABCS-prollolopon is only one lime purfuclicato.
to a given line through
a given point
There fore, fill?.

b) Given $A B C D$-puodilaterol

$$
\begin{aligned}
& \overline{A B} \cong \overline{A C} \\
& \overline{A D} \cong \overline{B C}
\end{aligned}
$$

Prom: ABCD-prollelogrou
Nell show $\overline{A B}$ II $\overline{D C}$
Proof

(4)
(c)

(a) If a jeometric figree is a rhombirs, then its didgonas se perpeudiculor.
(b) A rhombus is a posollelogrour cinth two adjacut sides 4. Ma II NP congrueed.
(d) Given: ABCD rhoubus

Prove $\overline{A C} \perp \overline{B O}$

3. $\triangle A O B \cong \triangle C O B$
4. $\angle A O B \cong \angle C O B$
5. $\angle A O B, \angle C O B$ ogaunt x^{\prime}
6. $\overline{A C} \perp \overline{B D}$
$\overline{A C}, \overline{B D}$-diagonals
(5)

we'll show $<3 \cong<4$

(6) Prook

3. SSS
4. CPCTC
5. cafinitin adj: x^{\prime} 」
6. deficudin \perp lines

\triangle MXP $A, B=$ midpoint Then
$A B= \pm N P$ $2 A B=M P$ ($N P=2(5)=10$ in
(8) 55
Solutio
$\overline{A B}$ - median $\Rightarrow A B=\frac{1}{2}(C E+F M)$

$$
2 A B=C E+F M
$$

$$
2(6 x+7)=(5 x+3)+(13 x-1)
$$

$$
12 x+14=5 x+3+13 x-1
$$

$$
12 x+14=18 x+2
$$

$$
14-2=18 x-12 x
$$

$$
12=6 x, \quad x=2
$$

($2,3,4$)
(10) (a) $7 a / x$. The diagonas of a poollologrom se not coneruait, in guerol.
Counter example:
ABCD - \triangle,
but $\overline{A C} \cong \overline{A B}$
(b) True; definitine of a rhow bus.
(c) Folts; mionder to be a rhoubres, a posolleicgoun nuest hove ell sides congruent. in querol, in a parollelobrocu only the epposit olesice Con 2 mert, nert two adjacent side.
(a) Folse; AAA is not a eose of tridugle colesmency.
(b) Fobe; two thidurles cou the proven congment using one of the pollowing. SAS, ASA, SSS, AAS.
(f) Foese tecour the oum of the meocmes of the sugles μ a triduifle i, 180°.
(g) Fold;

Counter example : troMy 7oid with $m \angle A=m \subset 0=90^{\circ}$, uhich is mot a rectaeyle.

