Review Test 3 Chapters 5, 6, and 7

Study the following:

CHAPTER 5

- Know the following:
- Similar triangles (5.2)
- Triangle Proportionality Theorem (5.2)
- Triangle Angle - Bisector Theorem (5.2)
- Properties of right triangles (5.3)
- The Phytagorean Theorem (5.4)
- Special right triangles (5.4)
- Know the following formal proof:
- Section 5.2 - Theorem 5.11
- Review the following homework problems:
- All examples
- Section 5.2 - \# 19, 25, 31,33, 36, 37
- Section 5.3 - \# all assigned
- Section 5.4-\#15, 19, 27, 31, 45, 47

CHPATER 6

- Handout Chapter 6
- Know the following formal proofs:
- Section 6.2 - Theorem 6.6, theorem 6.7
- Section 6.3 - Theorem 6.19
- Know the proofs of the following theorems (informal OK):
- Section 6.2 - Theorem 6.13, theorem 6.15, theorem 6.20
- Review the following homework problems:
- All examples
- Sections 6.1, 6.2, 6.3 - all assigned

CHAPTER 7

- Review the following homework problems:
- All examples
- Sections 7.2 \& 7.3 - all assigned

Review of the definitions, theorems, and properties learned. Answer the following questions. Make a drawing for each situation. Then translate the statements mathematically.

TRIANGLES

11. The segment that joins the midpoints of two sides of a triangle is \qquad to the third side and its length is \qquad .
12. If a line parallel to one side of a triangle intersects the other two sides in different points, then:
a) two \qquad triangles are formed.
b) The line divides the sides in \qquad .
13. When are two triangles similar?
14. What is the Pythagorean theorem? \qquad .

The triangle must be \qquad .
19. What is the converse of the Pythagorean theorem? Is it true?
20. What do you know about the altitude to the hypotenuse in a right triangle?
a) The altitude divides the right triangle into two \qquad triangles. Each of these two tria ngle is also similar to \qquad .
b) The altitude is the geometric mean of \qquad .
c) One leg is the geometric mean of \qquad
21. In a right triangle, a leg opposes a 30 degree angle if and only if its length is \qquad of the length of the \qquad _.
22. The median from the right angle in a right triangle is \qquad .
23. In a triangle, the bisector of one angle divides the opposite side into segments that are \qquad to the \qquad .

Answers: TRIANGLES
11. parallel; half of the third side 16. similar; equal ratios 17. AA \quad 18. $a^{2}+b^{2}=c^{2}$, where a and b are legs, and c is hypotenuse; a right triangle 19. If $a^{2}+b^{2}=c^{2}$, then the triangle is right, with c = hypotenuse; yes 20a. similar ; the given triangle $\quad 20 \mathrm{~b}$. the segments formed on the hypotenuse
20c. the hypotenuse and the adjacent segment on the hypotenuse
21. half; hypotenuse
22. one-half the length of the hypotenuse
23. proportional; two sides that form the angle

Answer true or false:

1) The hypotenuse is the side opposite one of the acute angles in a right triangle.
2) A right isosceles triangle has two right angles.
3) If three angles of one triangle are congruent with three angles of a second triangle, then the two triangles are congruent.
4) Triangles can be proved congruent using SSA. \qquad
5) Corresponding parts of congruent triangles are congruent. \qquad
6) Two congruent triangles are also similar. \qquad
7) Two similar triangles are also congruent. \qquad
8) If two angles of one triangle are congruent to two angles of a second triangle, then the triangles are similar.
9) If an acute angle of a right triangle is congruent to an acute angle of a second right triangle, then the two triangles are similar.
10) A line through two sides of a triangle parallel to the third side divides the two sides proportionally.
11) If the three sides of one triangle are parallel, respectively, to three sides of a second triangle, then the triangles are similar.
12) Two right triangles are always similar triangles.
13) The altitude to the hypotenuse of a right triangle forms two triangles that are similar. \qquad
14) If the hypotenuse of an isosceles right triangle measures $8 \sqrt{2}$ inches, then each leg is 8 inches long.
15) The three sides of a right triangle could measure 9,40 , and 42 inches.
\qquad
(Answers: 1F, 3F, 4F, 5F, 6T, 18T, 19F, 20T, 21T, 22T, 23T, 24F, 25T, 26T, 27F)
1. a) Find the circumference of the given circle (exact answer).
b) Find the area of the given circle.
c) Find the length of the arc AB .
d) Find the area of the sector AOB.

2. Triangle ABC is a right triangle with hypotenuse $B C=15$ in and leg $A B=9 \mathrm{in}$.

Find:
a) BD
b) $C D$
c) AC
d) AD

Justify your answers.

3. a) Draw a right triangle with right angle C. Then draw the altitude $\overline{C D}$ and the median $\overline{C E}$.
b) If $A B=c, A D=a$ and, find $C E, C D$ and AC. Justify your answers.
4.

Given: $\mathrm{DE}=9, \mathrm{EC}=4, \mathrm{~EB}=7$
Find: AB
5.Given: $\overrightarrow{A B}$ and $\overrightarrow{A C}$ are tangents to $\odot O$, with B and C on the circle and $m \angle A C B=65^{\circ}$.
Find:
a) $m \overparen{B C} \quad$ b) $m \overparen{B D C}$
c) $m \angle A B C$
d) $m \angle A$

Answers

1. a) $20 \pi \mathrm{ft}$; b) $100 \pi \mathrm{sq}$. ft; c) $10 \pi / 3 \mathrm{ft}$; d) $50 \pi / 3 \mathrm{sq}$. ft
2. a) $27 / 5$; b) $48 / 5$; c) 12 ; d) $36 / 5$
3. $\mathrm{CE}=\mathrm{c} / 2 ; \mathrm{CD}=\sqrt{a(c-a)} ; \mathrm{AC}=\sqrt{a c}$
4. $85 / 7$
