Review Test 2 - Chapters 3 and 4

Test 2 will be on Wed. April 29; Prepare this Review for Monday, April 27
Review of the definitions, theorems, and properties learned. Answer the following questions. Make a drawing for each situation. Then translate the statements mathematically.

TRIANGLES

1. When are two triangles congruent?
2. What special case of congruency do you know in the case of two right triangles?
3. A triangle is isosceles if and only if \qquad .
4. A triangle is isosceles if and only if \qquad _.
5. A triangle is equilateral if and only if \qquad .
6. A triangle is equilateral if and only if \qquad .
7. The measure of an exterior angle of a triangle is equal to \qquad .
8. The sum of the measures of the angles of a triangle is \qquad .
9. If two sides of a triangle are congruent, then the angles opposite them are \qquad
10. Given a line and a point not on the line, the \qquad is the shortest segment that can be drawn from the point to the line.
11. The segment that joins the midpoints of two sides of a triangle is \qquad to the third side and its length is \qquad .
12. An angle bisector of a triangle is \qquad _.
13. A median of a triangle is \qquad .
14. An altitude of a triangle is \qquad
15. A perpendicular bisector of a side of a triangle is \qquad .

PARALLEL LINES / PARALLEL LINES CUT BY TRANSVERSALS

1. If three or more parallel lines cut congruent segments on one transversal, then they cut \qquad on every transversal.
2. Two lines are parallel if they lie in the same \qquad and do not \qquad .
3. Given two lines with one transversal, then two lines are parallel if and only if
a) One pair of \qquad are congruent.
or
b) One pair of \qquad are congruent.
or
c) One pair of \qquad are congruent.
or
d) One pair of same-side interior angles are \qquad .
or
e) One pair of same-side exterior angles are \qquad .
4. If two coplanar lines are perpendicular to a third line, then they are \qquad to each other.

QUADRILATERALS

In a parallelogram,

1- the opposite sides are \qquad and \qquad .
and
2- the opposite angles are \qquad .
and
3- the diagonals are not \qquad ; they are not \qquad ;
they \qquad each other.
and
4- the sum of the measures of the angles is \qquad .
5. A quadrilateral is a parallelogram if:
a) two opposite sides are \qquad and \qquad
or
b) both pairs of opposite angles are \qquad .
or
c) diagonals \qquad each other.

In a rectangle,

6- the opposite sides are \qquad and \qquad .
and
7- all angles are \qquad , each \qquad .
and
8- the diagonals are \qquad ; they are not \qquad ; they \qquad each other.
and
9- the sum of the measures of the angles is \qquad .

In a square,

10- the opposite sides are \qquad and all sides are \qquad .
and
11- all angles are \qquad , each \qquad .
and
12- the diagonals are \qquad ; they are \qquad ; they \qquad each other.
and
13- the sum of the measures of the angles is \qquad .

In a rhombus,

14- the opposite sides are \qquad and \qquad .
and
15- the opposite angles are \qquad .
and
16- the diagonals are not \qquad ; they are \qquad ; they \qquad each other.
and
17- the sum of the measures of the angles is \qquad .

In a trapezoid,
18- one pair of opposite sides are \qquad , but not \qquad .
and
19- the diagonals are not \qquad ; they are not \qquad ;
they do not \qquad each other.
and
20- the sum of the measures of the angles is \qquad .

21- the median is the segment joining the \qquad .
and it is \qquad to the bases and its length is equal to \qquad

In an isosceles trapezoid,

22- the unparallel sides also known as \qquad are \qquad
and
23- the base angles are \qquad .
and
24- the diagonals are \qquad ; they \qquad bisect each other.
25. A trapezoid is isosceles if:
a) \qquad are congruent
or
b) \qquad are congruent.

Answers: TRIANGLES

1. SAS, SSS, ASA, AAS 2. HL 3. it has two congruent sides 4. it has two congruent angles
2. it has all three sides congruent 6. it has all three angles congruent (each of measure 60 degrees)
3. the sum of the measures of the two nonadjacent interior angles of the triangle 8.180 degrees
4. congruent 10. perpendicular segment from the point to the line 11. parallel; half of the third side 12. the bisector of an angle of the triangle 13. the segment that joins one vertex with the midpoint of the opposite side 14. the line segment from one vertex perpendicular to the opposite side (or its extension) 15. the line that is perpendicular to the side at the midpoint Answers: PARALLEL LINES CUT BY TRANSVERSALS
$\begin{array}{lccl}\text { 1. congruent segments } & \text { 2. plane; intersect } & \text { 3a. corresponding angles } & \text { 3b. alternate interior angles } \\ \text { 3c. alternate exterior angles } & \text { 3d. supplementary } & \text { 3e. supplementary } & \text { 4. parallel }\end{array}$

Answers: QUADRILATERALS

Review the following :

Handout Sections 3.1
Handout Chapter 3 - Applications
Handout Section 4.1
Handout Section 4.4
Quiz \#2
Homework problems from Chapter 3 and Chapter 4

Know the formal proofs of the following theore ms:

Handout Section 3.1
Theorem: T 3.1
Section 3.3
T 3.11

Handout Section 4.1 Theorems: C4.2, T 4.4, T4.5, T4.7, T4.8
Section 4.2
Theorem 4.10

Handout Section 4.4
Theorems: T4.21

Answer true or false:

2) An isosceles triangle can have an obtuse angle as one of its angles.
3) If three angles of one triangle are congruent with three angles of a second triangle, then the two triangles are congruent.
4) Triangles can be proved congruent using SSA.
5) Corresponding parts of congruent triangles are congruent.
6) The median to the base of an isosceles triangle bisects the vertex angle.
7) An exterior angle of a triangle is the supplement of one of the interior angles of the triangle. \qquad
8) If two angles of one triangle are congruent to two angles of a second triangle, the third angles are not necessarily congruent.
9) If a transversal is perpendicular to one of two parallel lines, it is perpendicular to the other line also.
10) If two angles of a quadrilateral are right angles, the quadrilateral is a rectangle. \qquad
11) A parallelogram is also a trapezoid.
12) In a trapezoid, two sides are always parallel.
13) If the four sides of a quadrilateral are congruent, it must be a square.
14) In a parallelogram, the diagonals bisect the angles.
15) In a rhombus, the diagonals bisect the angles.
16) Two similar triangles are also congruent.
17) If an acute angle of a right triangle is congruent to an acute angle of a second right triangle, then the two triangles are similar.
(Answers: 2T, 4F, 5F, 6T, 7T, 9T, 10F, 11T, 12F, 13F, 14T, 15F, 16F, 17T, 19F, 21T)

More practice

1. Which lines are parallel if
a) $\angle 1 \cong \angle 3$?
b) $\angle 3 \cong \angle 8$

2. Given: $\overline{X Y} \| \overline{W Z}$
$\angle 1 \cong \angle 2$
Prove: $\overline{M N} \| \overline{X Y}$

3.

Given | $\overline{A B}$ bisects $\overline{C D}$ |
| :--- |
| |
| $\overline{C D}$ bisects |
| $A B$ |

Prove $\triangle A O C \cong \triangle B O D$
4.

Given $\overline{I U} \perp \overline{E C}$
$\overline{E L} \perp \overline{I C}$
$\overline{C L} \cong \overline{C U}$
Prove $\triangle E C L \cong \triangle I C U$
5.

6. In a right triangle $F D G$ with right angle D, the bisector of angle D intersects the opposite side at E. The acute angles of the triangle are congruent. Prove that E is the midpoint of the side FG.

7

Given $\begin{aligned} & \angle 1 \cong \angle 2 \\ & \overline{M N} \cong \overline{Q P}\end{aligned}$
Prove $\overline{M Q} \| \overline{N P}$
8.

Given
$\angle A B C \cong \angle A C B$
$\overrightarrow{B N}$ bis $\angle A B C$
$\overrightarrow{C M}$ bis $\angle A C B$
Prove $\quad \triangle B M C \cong \triangle C N B$
9. Given: RSTV trapezoid
$\overline{R V} \| \overline{S T}$
$m \angle S R V=90^{\circ}$
M, N midpoints
$\mathrm{ST}=13 \mathrm{in}, \mathrm{RV}=17 \mathrm{in}, \mathrm{RS}=16 \mathrm{in}$
Find: RN.

10. Given: $\overline{A B} \cong \overline{C D}$
$\angle A B D \cong \angle C D B$
Prove: ABCD parallelogram

