# Review Test 2 - Chapters 3 and 4 Test 2 will be on Wed. April 29; Prepare this Review for Monday, April 27

**Review of the definitions, theorems, and properties learned.** Answer the following questions. Make a drawing for each situation. Then translate the statements mathematically.

### TRIANGLES

1. When are two triangles congruent?

2. What special case of congruency do you know in the case of **two right triangles**?

| 3. A triangle is isosceles if and only if                                                  |                       |
|--------------------------------------------------------------------------------------------|-----------------------|
| 4. A triangle is isosceles if and only if                                                  |                       |
| 5. A triangle is equilateral if and only if                                                |                       |
| 6. A triangle is equilateral if and only if                                                |                       |
| 7. The measure of an exterior angle of a triangle is equal to                              |                       |
| 8. The sum of the measures of the angles of a triangle is                                  |                       |
| 9. If two sides of a triangle are congruent, then the angles opposite them are             |                       |
| 10. Given a line and a point not on the line, the                                          | is                    |
| 11. <b>The segment that joins the midpoints of two sides</b> of a triangle isits length is | to the third side and |
| 12. An angle bisector of a triangle is                                                     |                       |
| 13. A median of a triangle is                                                              |                       |

| 14. <i>A</i>  | An altitude of a triangle is                                                                               |                  |
|---------------|------------------------------------------------------------------------------------------------------------|------------------|
| 15. A         | A perpendicular bisector of a side of a triangle is                                                        |                  |
| PAR           | ALLEL LINES / PARALLEL LINES CUT BY TRANSVERSALS                                                           |                  |
|               | three or more parallel lines cut congruent segments on one transversal, then they cut<br>very transversal. |                  |
| 2. Tw         | vo lines are parallel if they lie in the same and do not                                                   |                  |
| 3. Giv        | ven two lines with one transversal, then two lines are parallel if and only if                             |                  |
| or            | a) One pair of are congruent.                                                                              |                  |
|               | b) One pair of are congruent.                                                                              |                  |
| or            | c) One pair of are congruent.                                                                              |                  |
| or            | d) One pair of same-side interior angles are                                                               |                  |
| or            | e) One pair of same-side exterior angles are                                                               |                  |
| 4. If t       | two coplanar lines are perpendicular to a third line, then they are                                        | _ to each other. |
|               | QUADRILATERALS                                                                                             |                  |
| <u>In a p</u> | parallelogram,                                                                                             |                  |
|               | 1- the opposite sides are and                                                                              |                  |
| and           | 2- the opposite angles are                                                                                 |                  |
| and           |                                                                                                            |                  |
|               | 3- the diagonals are not; they are not;                                                                    | ;                |
|               | they each other.                                                                                           |                  |
| and           |                                                                                                            |                  |
|               | 4- the sum of the measures of the angles is                                                                |                  |

| <u>5. A q</u>    | uadrilateral is a parallelogram if :                               |                   |   |
|------------------|--------------------------------------------------------------------|-------------------|---|
|                  | a) two opposite sides are                                          | and               |   |
| or               | b) both pairs of opposite angles are                               | ·                 |   |
| or               | c) diagonals each othe                                             | r.                |   |
| In a rec         | ctangle,                                                           |                   |   |
| and              | 6- the opposite sides are                                          | and               |   |
|                  | 7- all angles are,                                                 | each              |   |
| and              | 8- the diagonals areeach other.                                    | ; they are not    |   |
| and              | 9- the sum of the measures of the angles is                        |                   |   |
| <u>In a sq</u>   | uare,                                                              |                   |   |
| and              | 10- the opposite sides are                                         | and all sides are |   |
|                  | 11- all angles are                                                 | , each            |   |
| and              | 12- the diagonals are                                              | ; they are        | ; |
| and              | they each other.<br>13- the sum of the measures of the angles is _ | ·                 |   |
| <u>In a rh</u> e | ombus,                                                             |                   |   |
| and              | 14- the opposite sides are                                         | and               |   |
| una              | 15- the opposite angles are                                        | ·                 |   |
| and              | 16- the diagonals are not                                          | • they are        |   |
|                  | they each other.                                                   | , they are        | , |
| and              | 17- the sum of the measures of the angles is _                     |                   |   |

# In a trapezoid,

|                                                                     | 18- one pair of opposite sides are                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | , but not              |
|---------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|
| and                                                                 | 19- the diagonals are not each other.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ; they are not;        |
| and                                                                 | 20- the sum of the measures of the angles is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |
|                                                                     | 21- the median is the segment joining the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                        |
|                                                                     | and it is to the bases and its le                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ngth is equal to       |
| <u>In an is</u>                                                     | sosceles trapezoid,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                        |
|                                                                     | 22- the unparallel sides also known as                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | are                    |
| and                                                                 | 23- the base angles are                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                        |
| and                                                                 | 24- the diagonals are; the diagonals are are; the diagonals are; the diagonals ar | ney bisect each other. |
| 25. A t                                                             | rapezoid is isosceles if:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                        |
| or                                                                  | a)a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | re congruent           |
| or                                                                  | b)a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | re congruent.          |
| <ol> <li>SAS</li> <li>it ha</li> <li>the s</li> <li>cong</li> </ol> | s all three sides congruent6. it has all thesum of the measures of the two nonadjacent interiorgruent10. perpendicular segment from the point                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                        |

opposite side 14. the line segment from one vertex perpendicular to the opposite side (or its

# extension) 15. the line that is perpendicular to the side at the midpoint Answers: **PARALLEL LINES CUT BY TRANSVERSALS**

| 1. congruent segments         | 2. plane; intersect | 3a. com | responding angles | 3b. alt | ernate interior angles |
|-------------------------------|---------------------|---------|-------------------|---------|------------------------|
| 3c. alternate exterior angles | 3d. suppleme        | ntary   | 3e. supplementary | 4. para | allel                  |

#### Answers: QUADRILATERALS

3. congruent; perpendicular; bisect 1. parallel; congruent 2. congruent 4. 360 degrees 5c. bisect each other 5a. parallel; congruent 5b. congruent 6. parallel; congruent 7. congruent; 90 degrees 8. congruent; perpendicular; bisect 9.360 degrees 10. parallel; 13. 360 degrees 11. congruent; 90 degrees 12. congruent; perpendicular; bisect congruent 14. parallel; congruent 15. congruent 16. congruent; perpendicular; bisect 17.360 19. congruent; perpendicular; bisect 18. parallel; congruent 20. 360 degrees 22. legs; congruent 21. midpoints of the unparallel sides; parallel; half of the sum of the bases 23. 24. congruent; do not congruent 25a. diagonals 25b. two base angles

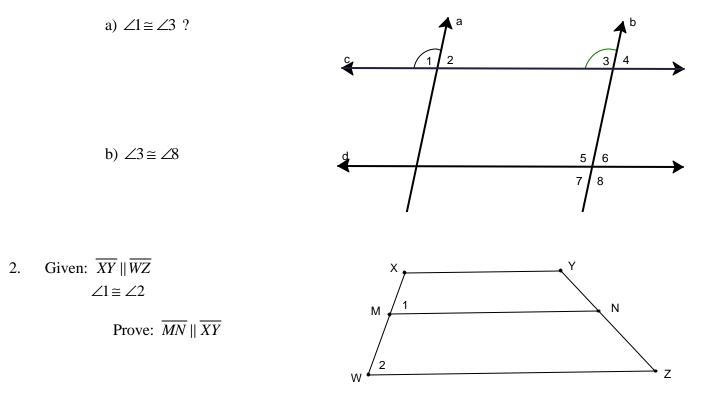
### **Review the following :**

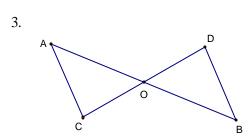
| Handout Sections 3.1             | Problems 4, 6 (see handout and solutions on the website) |
|----------------------------------|----------------------------------------------------------|
| Handout Chapter 3 – Applications | (see handout and solutions on the website)               |
| Handout Section 4.1              | (see handout and solutions on the website)               |
| Handout Section 4.4              | (see handout and solutions on the website)               |
| Quiz #2                          |                                                          |
| Homework problems from Chapter 3 | 3 and Chapter 4                                          |

### Know the formal proofs of the following theore ms:

| Handout Section 3.1 | Theorem: T 3.1                          |
|---------------------|-----------------------------------------|
| Section 3.3         | Т 3.11                                  |
| Handout Section 4.1 | Theorems: C4.2, T 4.4, T4.5, T4.7, T4.8 |
| Section 4.2         | Theorem 4.10                            |
| Handout Section 4.4 | Theorems: T4.21                         |

#### Answer true or false:


2) An isosceles triangle can have an obtuse angle as one of its angles.
4) If three angles of one triangle are congruent with three angles of a second triangle, then the two triangles are congruent.
5) Triangles can be proved congruent using SSA.
6) Corresponding parts of congruent triangles are congruent.
7) The median to the base of an isosceles triangle bisects the vertex angle.
9) An exterior angle of a triangle is the supplement of one of the interior angles of the triangle.
10) If two angles of one triangle are congruent to two angles of a second triangle, the third angles are not necessarily congruent.
11) If a transversal is perpendicular to one of two parallel lines, it is perpendicular to the other line also.
12) If two angles of a quadrilateral are right angles, the quadrilateral is a rectangle.

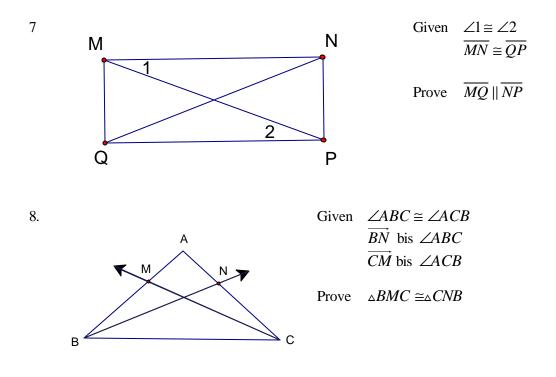

| 13) A parallelogram is also a trapezoid.                                                                                                                                                      |                    |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|
| 14) In a trapezoid, two sides are always parallel.                                                                                                                                            |                    |
| 15) If the four sides of a quadrilateral are congruent, it must be a square.                                                                                                                  |                    |
| 16) In a parallelogram, the diagonals bisect the angles.                                                                                                                                      |                    |
| 17) In a rhombus, the diagonals bisect the angles.                                                                                                                                            |                    |
| <ul><li>19) Two similar triangles are also congruent.</li><li>21) If an acute angle of a right triangle is congruent to an acute angle of a second right two triangles are similar.</li></ul> | triangle, then the |
| two mangles are similar.                                                                                                                                                                      |                    |

(Answers: 2T, 4F, 5F, 6T, 7T, 9T, 10F, 11T, 12F, 13F, 14T, 15F, 16F, 17T, 19F, 21T)

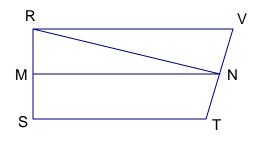
## More practice


1. Which lines are parallel if



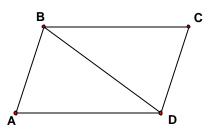



Given  $\overline{AB}$  bisects  $\overline{CD}$  $\overline{CD}$  bisects  $\overline{AB}$ 


Prove  $\triangle AOC \cong \triangle BOD$ 



6. In a right triangle FDG with right angle D, the bisector of angle D intersects the opposite side at E. The acute angles of the triangle are congruent. Prove that E is the midpoint of the side FG.




 $\overline{RV} \parallel \overline{ST}$   $m \angle SRV = 90^{\circ}$ M, N midpoints ST = 13 in, RV = 17 in, RS = 16 inFind: RN.



10. Given:  $\overline{AB} \cong \overline{CD}$  $\angle ABD \cong \angle CDB$ 

Prove: ABCD parallelogram

