QUIZ \#4 @ 50 points

Write neatly. Show all work. Use only information covered up to this point.
Write all responses on separate paper. Clearly label the exercises.

1. Find the following:
a) $\int\left(3 x-\frac{2}{x^{1 / 2}}\right) d x$
b) $\int_{1}^{2}\left(e^{2 x}+x^{5}-4^{x}\right) d x$
c) $\int_{0}^{\pi}\left(3 \cos 2 t-\frac{1}{2} \sin \frac{t}{3}\right) d t$
2. Graph the given function $f(x)=2 x^{3}$ between $x=0$ and $x=1$. Then:
a) Using four rectangles whose height is given by the value of the function at the right-end of each subinterval, estimate the area under the graph.
b) Find the exact area between the graph and the x-axis.
3. Find the total area between the region and the x -axis.

$$
y=3 x^{2}-3, \quad-2 \leq x \leq 2
$$

4. If $y=\int_{\tan x}^{0} \frac{d t}{1+t^{2}}$, find $\frac{d y}{d x}$.
5. Complete the following definitions, properties, theorems, or formulas:
a) The Max - Min Inequality for Definite Integrals:

$$
\text { If } m \leq f(x) \leq M \text { for } x \in[a, b] \text {, then }
$$

\qquad
b) Write the definition of the definite integral using Riemann sums and support your answer with a graph.
c) $\frac{d}{d x} \int_{a}^{x} f(t) d t=$ \qquad
d) $\int x^{n} d x=$ \qquad
e) $\int \frac{1}{x} d x=$ \qquad
6. Suppose that f is a differentiable function shown in the accompanying graph and that the position at time $t(\sec)$ of a particle moving along a coordinate axis is

$$
s=\int_{0}^{t} f(x) d x
$$

meters. Use the graph to answer the following questions. Give reasons for your answers.
a) What is the particle's velocity at $t=5$?
b) Is the acceleration at time $t=5$ positive or negative?
c) What is the particle's position at time $t=3$?
d) Approximately when is the acceleration zero?
e) On which side of the origin does the particle lie at time $t=9$?

Quiz \# 4-somions

$$
\begin{aligned}
& \text { (1) (a) } \int\left(3 x-\frac{2}{x^{\frac{1}{2}}}\right) d x= \\
= & 3 \int x d x-2 \int x^{-\frac{1}{2}} d x \\
= & 3 \frac{x^{2}}{2}-2 \cdot \frac{x^{\frac{1}{2}}}{\frac{1}{2}}+C \\
= & \frac{3}{2} x^{2}-4 x^{\frac{1}{2}}+C
\end{aligned}
$$

$$
\begin{aligned}
& \text { (6) } \int_{1}^{2}\left(e^{2 x}+x^{5}-4^{x}\right) d x= \\
& =\left(\frac{e^{2 x}}{2}+\frac{x^{6}}{6}-\frac{4^{x}}{\ln 4}\right]_{1}^{2} \\
& =\left(\frac{e^{4}}{2}+\frac{2^{6}}{6}-\frac{4^{2}}{\ln 4}\right)-\left(\frac{e^{2}}{2}+\frac{1}{6}-\frac{4}{\ln 4}\right) \\
& =\frac{1}{2}\left(e^{4}-e^{2}\right)+\frac{63}{6}-\frac{12}{\ln 4} \\
& =\frac{1}{2}\left(e^{4}-e^{2}\right)+\frac{21}{2}-\frac{12}{\ln 4}
\end{aligned}
$$

let $A=$ ana mudn the sopa

$$
\begin{aligned}
& \left.(a) A \approx \frac{1}{4} f\left(\frac{1}{4}\right)+\frac{1}{4} f\left(\frac{1}{2}\right)+\frac{1}{4} f\left(\frac{3}{4}\right)+\frac{1}{4} f 11\right) \\
& A \approx \frac{1}{4}\left[2\left(\frac{1}{4}\right)^{3}+2 \cdot\left(\frac{1}{2}\right)^{3}+2\left(\frac{3}{4}\right)^{3}+2(1)^{3}\right] \\
& A \approx \frac{2}{4}\left[\frac{1}{64}+\frac{1}{8}+\frac{27}{64}+1\right] \\
& A \approx \frac{1}{2}\left(\frac{1}{16}+\frac{1}{8}+\frac{16}{8}\right)=\frac{1}{2} \cdot \frac{25}{16}=\frac{25}{32} \\
& A \approx \frac{25}{32}
\end{aligned}
$$

(b) $f(x) \geqslant 0$ for ang $x \in[0,1]$

$$
\begin{aligned}
& \text { Therefoe, } \\
& A=\int_{0}^{1} 2 x^{3} d x=2 \int_{0}^{1} x^{3} d x \\
& \left.=2 \frac{x^{4}}{4}\right]_{0}^{1}=\frac{1}{2}\left(1^{4}-0\right)=\frac{1}{2} \\
& A=\frac{1}{2}
\end{aligned}
$$

(3) $y=3 x^{2}-3, \quad-2 \leq x \leq 2$

$$
\begin{aligned}
& \frac{d y}{d x}=\frac{d y}{d u} \cdot \frac{d u}{d t} \\
& \frac{d y}{d x}=\frac{c^{\prime}}{d u}\left(-\int_{0}^{u} \frac{1}{1+t^{2}} d t\right) \cdot \frac{d u}{d t} \\
& \frac{d y}{d x}=-\frac{d}{d u}\left(\int_{0}^{u} \frac{1}{1+t^{2}} d t\right) \cdot \frac{d u}{d t}
\end{aligned}
$$

$$
x \text {-n: } \quad 3 x^{2}-3=0
$$

$$
3\left(x^{2}-1\right)=0
$$

$$
x=-1 \text { on } x=1
$$

let A - area between the curve seed the x-axis

$$
\frac{d y}{d x}=-\frac{1}{1+u^{2}} \cdot \frac{d u}{d t}
$$

$$
\begin{aligned}
& A=\left|\int_{-2}^{-1} y d x\right|+\left|\int_{-1}^{1} y d x\right|+\left|\int_{1}^{2} y d x\right| \\
& A=\left|\int_{-2}^{-1}\left(3 x^{2}-3\right) d x\right|+\left|\int_{-1}^{1}\left(3 x^{2}-3\right) d x\right|+\left|\int_{1}^{2}\left(3 x^{2}-3\right) d x\right|
\end{aligned}
$$

$$
\frac{d y}{d x}=\frac{-1}{1+\tan ^{2} x} \cdot \sec ^{2} x
$$

$$
\frac{d y}{d x}=\frac{-\sec ^{2} x}{\sec ^{2} x}=-1
$$

$\left.\left.\left.A=\mid\left(x^{3}-3 x\right)\right]_{-2}^{-1}|+|\left(x^{3}-3 x\right)\right]_{-1}^{1}|+|\left(x^{3}-3 x\right)\right]_{1}^{2} \mid$

$$
\frac{d y}{d x}=-1
$$

$A=\mid(-1-3(-1)-((-8)-3(-2)) \mid+$
$+|1-3-(-1-3(-1))|+$
(5) (a) $m(b-a) \leqslant \int_{a}^{b} f(x) d x \leqslant M(b-a)$
$+|(8-3(2))-(1-3(1))|$
$A=|2+2|+|-2-2|+|2+2|$
$A=12$
(4) $y=\int^{0} \frac{d t}{1+t^{2}}$
tans

$$
y=-\int_{0}^{\tan x} \frac{1}{1+t^{2}} d t
$$

let $\tan x=u$
then $y=-\int_{0}^{u} \frac{1}{1+t^{2}} d t$
(b) $\int_{a}^{b} f(x) d x=\lim _{n \rightarrow \infty} \sum_{k=1}^{n} f\left(c_{k}\right) \Delta x$
where $f=\begin{gathered}\text { continuous on }[a, b] \\ \text { function }\end{gathered}$

$$
\Delta x=\frac{b-a}{n}
$$

$c_{1}, c_{2} \ldots, c_{n}=$ sample pains

(c) $\frac{d}{d x} \int_{a}^{x} f(t) d t=f(x)$
(d) $\int x^{n} d x=\frac{x^{n+1}}{n+1}+c$
(c) $t=3$,

$$
S=\int_{0}^{3} f(x) d x \text {-this }
$$

represents the siea cuder the grople of $y=f(x)$
(e) $\int \frac{1}{x} d x=\ln |x|+C$ sud the x-axps hetmeen $x=0$ ond $x=3$

$$
\int_{0}^{3} f(x) d x=-\frac{1}{2} \cdot 3 \cdot 3=4.5 \mathrm{~m}
$$

(6) $s=\int_{0}^{t} f(x) d x$. foritine

Gunclin (d) occeleratine is tew
Then $\frac{d s}{d t}=$ velodity fruction tanguet to the when

$$
\frac{d s}{d t}=\frac{d}{d t} \int_{0}^{t} f(x) d x=f(t)
$$

So the rapl of $y=f(x)$ is ter \Rightarrow Dusuct is horigutole
At about $t=4$ and $t=7$
represcuts the velocity fuuction
(a) $t=5, f(5)=2$
(b) $\frac{d^{2} s}{d t^{2}}=\frac{d t}{d t}=$ necieralion The ore a abore the x-atis the poritin of the porlide above the x-ati' is greoder thou the area below the x-axis \Rightarrow
At $t=5$. the alige of the toug guct to the Priph is negative, so the acolpratoin so the particle is on the risht side of the origiu

