TEST 1 @ 120 points

Write in a neat and organized fashion. Write your complete solutions on SEPARATE PAPER. You should use a pencil. For an exercise to be complete there needs to be a detailed solution to the problem. Do not just write down an answer. No proof, no credit given! Clearly label each exercise.

1. Solve the following equations:
a) $0.4(0.2 n-0.3)=0.01$
b) $\frac{4}{5}(x+2)=\frac{1}{2}+\frac{5}{6}(x+3)$
c) $|2 x+5|-10=13$
d) $A=\frac{1}{2} h(b+B)$; solve for B.
e) $\left|x-\frac{1}{2}\right|=|2 x+1|$
2. Solve the following inequalities. Graph the solution set. Write the solution set in interval notation.
a) $\frac{1}{2} x-3>2 x+3\left(x-\frac{1}{3}\right)$
b) $|5+2 x| \leq-\frac{1}{2}$
c) $|2 x+1|+1 \leq 5$
d) $|1-2 x|-5>4$
3. Let $2 x+\frac{1}{3} y=1$ a linear equation in two variables.
a) Graph the equation by the intercepts method. Clearly label the axes and the intercepts.
b) Find the slope of the line.
c) Find an equation for the line perpendicular to the given line and passing through $(1,-2)$.
4. Four functions are given:

$$
l(x)=\frac{3 x+1}{2 x+7} ; \quad g(x)=\sqrt{1-3 x} ; \quad h(x)=3 x^{2}+5 x-1 ; \quad f(x)=4 x-6
$$

Answer the following:
a) Find the domain of each function.
b) Find $g(2 a), h(x+1),(h+f)(x),(h-f)(-1)$.
5. Let $f(x)=\left\{\begin{array}{ll}x^{2}+1, & \text { if } x \leq 0 \\ 2, & \text { if } 0<x \leq 5 \\ 1-6 x, & \text { if } x>5\end{array}\right.$ be a piece - wise defined function. Answer the following:
a) What is the domain of the function?
b) Find $f(-2), f(0), f\left(\frac{1}{3}\right), f(10)$.
6.

Use the graphs of f and g to answer the following:
a) Are f and g functions? Why?
b) State the domain and range of f.
c) State the domain and range of g.
d) $(f+g)(-4)$
e) $(f g)(3)$
f) $\left(\frac{f}{g}\right)(1)$
g) Solve $f(x)=0$. What do the solutions of this equation represent for the graph of f ?
h) Find $g(0)$. What does this represent for the graph of g

7.
a) Graph the solution set of the following system of inequalities.

Show clearly how you graph the lines and what test points you're using. Clearly label the axes, the lines, and the points used.
b) Find the coordinates of all vertices of the solution set.

$$
\left\{\begin{array}{l}
x \geq-2 \\
y \leq 4 \\
3 x+y \leq 6 \\
2 x-y \leq-1
\end{array}\right.
$$

8. Solve the following system of equation:

$$
\left\{\begin{array}{l}
2 x+y=2 \\
x+y-z=4 \\
3 x+2 y+z=0
\end{array}\right.
$$

9.

Choose THREE of the following word problems. Show clearly what your variables represent. Show clearly the equation(s) you use to solve each problem. You may solve one problem for extra credit.
A. A person invested $\$ 6700$ for one year, part at 8%, part at 10%, and the remainder at 12%. The total annual income from these investments was $\$ 716$. The amount of money invested at 12% was $\$ 300$ more than the amount invested at 8% and 10% combined. Find the amount invested at each rate.
B. At a price of p dollars per ticket, the number of tickets to a rock concert that can be sold is given by the demand model $D=-25 p+7800$. At a price of p dollars per ticket, the number of tickets that the concert's promoters are willing to make available is given by the supply model $S=5 p+6000$.
a) How many tickets can be sold and supplied for $\$ 50$ per ticket?
b) Find the ticket price at which the supply and demand are equal. At this price, how many tickets will be supplied and sold?
C. The function $W(x)=0.05 x+3.2$ models the number of women, $W(x)$, in millions, enrolled in U.S. colleges x years after 1980 .
The function $M(x)=0.02 x+3.6$ models the number of men, $M(x)$, in millions, enrolled in U.S. colleges x years after 1980. Use these functions to answer the following questions:
a) Find and interpret $W(11)$.
b) Find and interpret $M(13)$
c) Find and interpret $W(10)-M(10)$.
d) Was there a time after 1980 when the number of women enrolled in U.S. colleges was equal to the number of men enrolled in U.S. colleges?
D. The cost in dollars of renting a car for one day from two different rental agencies and driving it d miles is given by the following equations: $C_{1}=50+0.10 \mathrm{~d}$ and $C_{2}=30+0.20 \mathrm{~d}$
a) Explain the meaning of each equation.
b) Graph both equations on the same coordinate system. Label the axes and all points used.
c) Which agency is cheaper?
E. An equation for the concentration of toxic chemicals is $C(t)=285-15 t$, where C is the concentration in part per milliliter (ppm), and t is the number of years from now.
a) Find the intercepts of the graph and graph the equation using the intercepts.
b) What is the significance of the intercepts?
c) Use function notation to express the concentration of the chemicals three years from now. What will the concentration be then?
d) Use function notation to express the question, "When will the concentration of chemicals be 180ppm?" In what year will the concentration of chemicals be 180 ppm ?
F. The value of a stock varies during the course of any trading day. The price per share " P " of a certain stock is shown on the graph below for a particular trading day. Note " l " represents any time between 8 am and 2 pm .

a) Is " P " a function of " $"$ "? Explain using the definition of function.

Using the graph, estimate the answers to the following questions (Use correct units).
b) What is the domain? What is the range?
c) For what value(s) of " l " does $P(\mathrm{t})=8$ and what does it mean in practical terms?
d) What is $P(11)$ and what does it mean in practical terms?
e) For what value(s) of " i " is $P(\mathrm{t})>5.50$?
(1) @) $0.4(0.2 n-0.3)=0.01$
$0.08 n-0.12=0.01$
$0.08 n=0.01+0.12$
$0.08 n=0.13$
$n=\frac{0.13}{0.08} \quad n=\frac{13}{8}$
OR

$$
\begin{aligned}
& 0.4(0.2 n-0.3)=0.01 \quad / \cdot 100 \\
& 10.10(0.4)(0.2 n-0.3)=100(0.01) \\
& 4(2 n-3)=1 \\
& 8 n-12=1 \\
& 8 n=13 \quad n=\frac{13}{8}
\end{aligned}
$$

(b) $\frac{6 / 4}{5}(x+2)=\frac{15}{2}+\frac{5}{6}(x+3)$

$$
\angle C O=30
$$

$$
\begin{aligned}
& \angle C O=30 \\
& 24(x+2)=15+25(x+3)
\end{aligned}
$$

$$
24 x+48=15+25 x+75
$$

$$
24 x+48=25 x+90
$$

$$
48-90=25 x-24 x
$$

$$
-42=x
$$

$$
x=-42
$$

$$
\begin{array}{ll}
& |2 x+5|-10=13 \\
& |2 x+5|=23 \\
2 x+5=23 & \text { on }
\end{array} \quad 2 x+5=-230 子 \begin{array}{ll}
2 x=23-5 & 2 x=-23-5 \\
2 x=18 & 2 x=-28 \\
x=9 & x=-14 \\
x \in\{9,-14\} &
\end{array}
$$

(d)

$$
\begin{aligned}
& A=\frac{1}{2} h(b+B) \\
& 2 A=h(b+B) \quad \div h \\
& b+B=\frac{2 A}{h} \\
& B=\frac{2 A}{h}-6 \text { or } B=\frac{2 A-6 h}{h}
\end{aligned}
$$

$$
\begin{array}{ll}
\text { (e) }\left|x-\frac{1}{2}\right|=|2 x+1| \\
x-\frac{1}{2}=2 x+1 & \text { or } \\
-\frac{1}{2}-\frac{1}{2}=-(2 x+1) \\
-\frac{1}{2}-1=2 x-x & x-\frac{1}{2}=-2 x-1 \\
-\frac{3}{2}=x & x+2 x=\frac{1}{2}-1 \\
x=\frac{-3}{2} & \left.3 x=\frac{-1}{2} \quad \right\rvert\, \cdot \frac{1}{3} \\
& x=\frac{-1}{6}
\end{array}
$$

(2) (a) $\frac{1}{2} x-3>2 x+3\left(x-\frac{1}{3}\right)$ $\{x-3>2 x+3 x-1$
$-3+1>5 x-\frac{1}{2} x$
$-2>\frac{10 x-x}{2}$
$-2>\frac{9 x}{2} / \cdot \frac{2}{9}$
$-\frac{4}{9}>x \quad x \quad x<-\frac{4}{9}$

interval uotatina

$$
x \in\left(-\infty,-\frac{4}{9}\right)
$$

(b) $|5+2 x| \leq-\frac{1}{2}$
not possible hecsute $|a| \geqslant 0$ for any $a \in R$
Therefore, $x \in \varnothing$ (no solutises)
(c)

$$
\begin{aligned}
& |2 x+1|+1 \leq 5 \\
& 12 x+1 \mid \leq 4 \\
& \underbrace{0}_{4}> \\
& -4 \leq 2 x+1 \leq 4 \\
& -5 \leq 2 x \leq 3
\end{aligned}
$$

grapl: $\underset{-\frac{5}{2}}{\underset{0}{3}} \xrightarrow{3}$,
internd cuotalim: $x \in\left[-\frac{5}{2}, \frac{3}{2}\right]$,
(d)

grople:

Interval nototion

$$
x \in(-\infty,-4) \cup(5, \infty)
$$

(3) $\quad 2 x+\frac{1}{3} y=1$
(a) $\left.\begin{array}{lll}\frac{x}{0} & y & (0,3) \\ \frac{1}{2} & 0 & \left(\frac{1}{2}, 0\right.\end{array}\right) x-7$
if $x=0, \frac{1}{3} y=1, \quad y=3$
if $y=0, \quad 2 x=1, \quad x=\frac{1}{2}$

(b) $m=$?
$2 x+\frac{1}{3} y=1$
$\frac{1}{3} y=-2 x+1 \quad / 3 \quad O R$

$$
y=-6 x+3
$$

$$
m=-6
$$

$$
\begin{aligned}
& m=\frac{\Delta y}{\Delta x} \\
& m=\frac{3-0}{0-\frac{1}{2}} \\
& m=\frac{3}{-\frac{1}{2}}=-6
\end{aligned}
$$

(c) line 1 to $2 x+\frac{1}{3} y=1$
through $(1,-2)$

$$
m_{1}=\frac{1}{6}
$$

Use $(1,-2)$ and $m=\frac{1}{6}$

$$
\begin{aligned}
& y-y_{1}=m(x-x) \\
& y-(-2)=\frac{1}{6}(x-1) \\
& \frac{\left\lvert\, y+2=\frac{1}{6}(x-1)\right.}{O R} \\
& y=\frac{1}{6} x-\frac{13}{6}
\end{aligned}
$$

(4) (a) $l(x)=\frac{3 x+1}{2 x+7}$
condition: $2 x+7 \neq 0$
$x \neq \frac{-7}{2}$
Domain $=\mathbb{R}\left|\left\{-\frac{7}{2}\right\}\right|$

$$
g(x)=\sqrt{1-3 x}
$$

condition $1-3 x \geqslant 0$

$$
1 \geqslant 3 x
$$

$$
\frac{1}{3} \geq x \text { on } x \leq \frac{1}{3}
$$

Domain $=\left(-\infty, \frac{1}{3}\right]$)

$$
h(x)=3 x^{2}+5 x-1
$$

Domain $=\mathbb{R} /$ (there are

$$
f(x)=4 x-6
$$

Domain $=x /($ no restrictions)

$$
\begin{aligned}
& \text { (b) } g(2 a)=\sqrt{1-3(2 a)} \\
& \mid g(2 a)=\sqrt{1-6 a} \\
& h(x+1)=3(x+1)^{2}+5(x+1)-1 \\
& =3\left(x^{2}+2 x+1\right)+5 x+5-1 \\
& =3 x^{2}+6 x+3+5 x+4 \\
& h(x+1)=3 x^{2}+11 x+7
\end{aligned}
$$

$$
\begin{aligned}
& (h-f)(-1)=h(-1)-f(-1) \\
& =\left(3(-1)^{2}+5(-1)-1\right)-(4(-1)-6) \\
& =(3-5-1)-(-4-6) \\
& =-3-(-10)=-3+10=7 \\
& (h-f)(-1)=7
\end{aligned}
$$

(5) (a) The function is de tined for any $x \in(-\infty, \infty)$ These foe, Domain $=\mathbb{R}$
(b) $f(-2)=(-2)^{2}+1=5$
because $x=-2 \leq 0$
$f(0)=0^{2}+1=1$
hecouse $0 \leq 0$
$f\left(\frac{1}{3}\right)=2$ because $x=\frac{1}{2} \in(0,5]$
$f(10)=1-6(10)=-59$

- Сессия $x=10>5$
(6) (a) They ore both functines be cause their groples poss the vertical line test-Huntis, any vertical lime has at most one cones on point with the grope
(b)

$$
\begin{aligned}
& D_{f}=[-5,5] \\
& R_{f}=[-2,2] \\
& D_{g}=[-4,5] \\
& R_{g}=[3,5]
\end{aligned}
$$

(d)

$$
\begin{aligned}
(f+g)(-4) & =f(-4)+g(-4) \\
& =0+3=3
\end{aligned}
$$

Testpoint $(0,0) \notin \quad 3 x+y=6$
$3(0)+0 \leq 6$ (true)
so $(0,0)=$ dolution
(e)

$$
\begin{aligned}
(f g)(3) & =f(3) g(3) \\
& =0 .(3)=0
\end{aligned}
$$

(f) $\left(\frac{f}{g}\right)(1)=\frac{f(1)}{g(1)}=\frac{1}{3}$
(g) $f(x)=0$ itf $x=-4$ on $x=3$

The solutions requesuct the x - mitercept of the sworl of f. $(-4,0)$ and $(3,0)$ a
(h) $g(0)=3$
$(0,3)$ refresents the y-witerecpt |D of the grople of g
(7) (a) $x \geqslant-21$

Bomedoy line: $x=-2$ (nertical line) $\xrightarrow{1 / 2 \pi / 2}$

Test point (0,0) \& $2 x-y=-1$
$2(0)-0 \leq-1$ (yoloc)
Test point $(0,0) \notin 2 x-y=-$
$2(0)-0 \leq-1 \quad$ (yoloc)
to $(0,0) \neq$ dolution + $\uparrow y$

owndsry line: $2 x-y=-1$

$$
\begin{array}{c|c}
x & y \\
0 & 1 \\
-\frac{1}{2} & 0
\end{array}
$$

1

$$
y \leq 4
$$

(b) The vertices on A, B, C, O

Bomedoy line: $y=4$ (honitukl line)

$$
3 x+y \leq 6
$$

Boundoy line: $3 x+y=6$ A is the interictim if

$$
\left\{\begin{array}{l}
x=-2 \\
\text { and } \\
2 x-y=-1
\end{array}<\begin{array}{l}
2(-2)-y=-1 \\
-4-y=-1 \\
\\
\\
\\
y=-y
\end{array}\right.
$$

$$
A(-2,-3)
$$

I) is the nifersection of

$$
x=-2 \text { and } y=4
$$

$$
0(-2,4)
$$

C is the mitesectin of $\{y=4$ and

$$
\begin{gathered}
3 x+y=6 \\
3 x=2 \\
x=\frac{2}{3}
\end{gathered}
$$

$$
C\left(\frac{2}{3}, 4\right)
$$

B is the intersectin of

$$
\left\{\begin{array}{c}
2 x-y=-1 \\
\text { and } \\
3 x+y=6
\end{array}\right.
$$

(t) $5 x=5, \quad x=1$

$$
3 x+y=6
$$

$$
3(i)+y=6, y=3
$$

$B(1,3)$
(f)

$$
\left\{\begin{array}{l}
2 x+y=2 \\
x+y-z=4 \\
3 x+2 y+z=0
\end{array}\right.
$$

(2) $\left\{\begin{aligned} x+y-z & =4 \\ 3 x+2 y+z & =0\end{aligned}\right.$
(3) $3 x+2 y+z=0$
(t) $4 x+3 y=4$

Use (1) $\left\{\begin{array}{l}2 x+y=2 \\ 4 x+3 y=4\end{array}\right)^{(4)}\left\{\begin{array}{l}-2\end{array}\right.$

$$
\left\{\begin{aligned}
&-4 x-2 y=-4 \\
& 4 x+3 y=4 \\
& y=0
\end{aligned}\right.
$$

(1) $2 x+y=2$

$$
2 x=2, \quad x=1
$$

(a)

$$
\begin{aligned}
& x+y-z=4 \\
& 1+0-z=4 \\
& -z=3 \\
& z=-3
\end{aligned}
$$

The oolution is ($1,0,-3$)
(94) $\$ 6700 \begin{aligned} & \text { I Iaccount at } 5 \% \\ & \text { III account at } 10 \% \\ & \text { III account at } 12 \%\end{aligned}$

Totol annual micome $=\$ 716$
Let $x=$ amount minsted in Tacconnt
$y=$ amount minested in II
$z=$ amount minested ii III

$$
\begin{aligned}
& \left\{\begin{array}{l}
x+y+z=6700 \\
8 \% x+10 \% y+12 \% z=716 \\
z=300+(x+y) \\
\left\{\begin{array}{l}
x+y+z=6700 \\
\frac{p}{100} x+\frac{10}{100} y+\frac{12}{100} z=716 \\
z=300+x+y
\end{array}\right.
\end{array} . \begin{array}{l}
100
\end{array}\right.
\end{aligned}
$$

$$
\left\{\begin{array}{l}
x+y+z=6700 \\
8 x+10 y+12 z=71600 \\
z=300+x+y
\end{array}\right.
$$

$$
\left\{\begin{array}{l}
x+y+z=6700 \\
4 x+5 y+6 z=35800 \\
z=300+x+y \tag{3}
\end{array}\right.
$$

Use substitution sue tho 4 fibstitu te z in equation (1) and (2)

$$
\begin{aligned}
& \text { and }(2)=6700 \\
& \left\{\begin{array}{l}
x+y+(300+x+y)=35,800 \\
4 x+5 y+6(300+x+y)=6
\end{array}\right. \\
& \left\{\begin{array}{l}
2 x+2 y=6400 \\
4 x+5 y+1800+6 x+6 y=35
\end{array}\right. \\
& \left\{\begin{array}{l}
2 x+2 y=6400 \\
10 x+11 y=34000
\end{array}\right. \\
& \left\{\begin{array}{l}
-10 x-10 y=-32,000 \\
10 x+1 Y y=34,000
\end{array}\right.
\end{aligned}
$$

(f) $y=2,000 \neq$ quinested

$$
\begin{aligned}
& 2 x+2 y=6400 \\
& x+y=3200 \\
& x+2000=3200
\end{aligned}
$$

$x=1200 ;$ winested at 8%
(3)

$$
\begin{aligned}
& z=300+x+y \\
& z=300+1200+2000
\end{aligned}
$$

$Z=3500 \mathrm{~g}$, minested at 12%
(GB) $D=-25 p+7800$
$\{p=$ price per ticket $\left\{\begin{aligned} P & =\text { ponce } \\ D= & \# \text { tickets that cam he } \\ & \text { sued (demand) }\end{aligned}\right.$

$$
S=5 p+6000
$$

$p=$ price per tick t
$S=$ \#tickets mode available (supply)
(a) if $p=50 \mathrm{~s} /$ ticket
$D=-25(50)+7800$
$D=6550$ tickets con the reed
$S=5(50)+6000$
$S=6250$ ticket couth supplied
(6) $p=$? such that $D=S$

$$
\begin{aligned}
& -25 p+7800=5 p+6000 \\
& 7800-6000=5 p+25 p \\
& 1800=30 p \\
& p=60 \$ \text { ticket }
\end{aligned}
$$

n'rocer for supply $=$ demond
Then, $D=S=5(60)+6000$
$=6300$ ti chit
If a ticket is $60 \$$, then the supply sud demserd one lotta equal to 6300 ticket
(aC)

$$
\begin{aligned}
& w(x)=0.05 x+3.2^{-7-} \\
& M(x)=0.02 x+3.6
\end{aligned}
$$

$x=$ \# years apter 1980
$W(x)=$ \# women enrolled wi colleges
$M(x)=\#$ men -4
(a) $w(11)=0.05(11)+3.2$
$\omega(11)=3.75$ mullion women enrolled " yeors after 1980, that is, in 1991.
(b) $M(13)=0.02(13)+3.6$
$M(13)=3.66$ milling men
enrolled 13 yeas offer $1980-$ that s, in 1993
(c) $w(10)-M(10)=$
$=\left(\begin{array}{l}0.05(10)+3.2)-(0.02(10)+3.6) \\ 3.7-3.8\end{array}\right.$ $=3.7-3.8$
$W(10)-M(10)=-0$. million. less women than men enrolled 10 gross of fer 1980 . that is, in 1990.
(d)

$$
\begin{aligned}
& \text { d) } x=\text { ? such that } \\
& w(x)=M(x) \\
& 0.05 x+3.2=0.02 x+3.6 \\
& 0.05 x-0.02 x=3.6-3.2 \\
& 0.03 x=0.4 \\
& x=\frac{0.4}{0.03}
\end{aligned}
$$

$x \approx 13.3$ yeas offer 1980
(90)

$$
\begin{aligned}
& C_{1}=50+0.10 d \\
& C_{2}=30+0.20 d
\end{aligned}
$$

$d=$ \# miles driven
$C_{1}=$ cost of renting a cor from agony,
$C_{2}=$ cost of renting $_{\text {II }}$ a cor fro agucy III
(a) $C_{1}=50+0.10 d$
it costs $50 \$ /$ day plus $0.10 \$$ per mile driven to rent a cor from agency I

$$
C_{2}=30+0.20 \mathrm{~d}
$$

It costs $30 \% /$ day plus $0.20 \$$ per nile driven to rent a cor fro agury II
(b) $C_{1}=50+0.10 \mathrm{~d}$

d	c
0	50
100	60

$$
C_{2}=30+0.20 \mathrm{~d}
$$

find A - miteroch in between C_{1} and C_{2}

$$
\begin{aligned}
& c_{1}=50+0.10 d \\
& c_{2}=30+0.20 d \\
& 50+0.10 d=30+0.20 d \\
& 20=0.10 d \\
& d=\frac{20}{0.10} \quad d=200 \text { miles }
\end{aligned}
$$

Therfor, if d (\# miles driven) is such that $0 \leq d<200$

(b) $t-n:(19,0)$

$$
C_{2}<C_{1}
$$

so agmcy II is cheoper
if $d=200$,

$$
c_{1}=C_{2}
$$

bota agucy, cost the some

$$
\text { If } d>200, \quad c_{1}<C_{2}
$$

no agency I is cheoper
(E) $(C t)=285-15 t$ $t=\#$ yeors from now $C(t)=$ concentratin chemical
(a) t =nidepsendint variath $C(t)=$ depurdut

t	c
0	285
19	0

$$
\begin{array}{cc}
t=0, & c=285 \\
c=0, & 285=15 t \\
& t=19
\end{array}
$$

when $t=19, C=0$
therefore, it aill toke 19 yerors from wow for the concunt ration to he fero

$$
C-n:(0,285)
$$

when $t=0, c=285$
Todoy's concunt satin is 285 ppm.
(c) $t=3, c=$?

$$
\begin{aligned}
& C(3)=285-15(3) \\
& C(3)=240 \mathrm{ppm}
\end{aligned}
$$

(d) $t=$? if $c=180 \mathrm{ppm}$
solve $C(t)=180$

$$
\begin{aligned}
& 285-15 t=180 \\
& 285-180=15 t \\
& 105=15 t \\
& t=\frac{105}{15} \\
& t=7 \text { yeors }
\end{aligned}
$$

7 yeors from sow the concentrstion willt 180 ppon.
(97) (a) p is a function of t he couts for every inpont (widepoudent variatle), there is sily sue outtput (dependenl noviata)
(b) Domain $=[\rho a m, 2 p m]$

$$
\text { Range } \approx[1 \$, 12 \$]
$$

(c) $P(t)=8$ iff $t \approx 11$ am on $t=12: 15$ pm or $t \simeq 1: 30$ pm
At 11 am, 12:15 pm and 1:30 pme the veice por shore was $\& \$$.
(d) $P(I I)=8$ dollars

At II am, the price por oleste wos of $\$$
(e) $P(t)>5.50$ iff $t \in[8 a \mathrm{~m}, 9: 15 \mathrm{am}]$ on

$$
t \in(10.15 \mathrm{am}, 2 p m]
$$

