QUIZ \#1 @ 50 points

Write in a neat and organized fashion. Write your complete solutions on SEPARATE PAPER. You should use a pencil. For an exercise to be complete there needs to be a detailed solution to the problem. Do not just write down an answer. No proof, no credit given! Clearly label each exercise.

1. Solve the following equations:
a) $2 t-4(1-3 t)=t+15$
b) $\frac{x}{2}-\frac{1}{10}=\frac{x}{5}+\frac{1}{2}$
c) $\frac{2 a-1}{2}-\frac{3 a-1}{3}=\frac{4 a-1}{4}$
d) $0.8(0.3 p-0.5)=0.8$
2. Solve each equation for the specified variable:
a) $V=\frac{1}{3} B h$ for h.
b) $E=I(R+r)$ for r.
c) $s=v t+g t^{2}$ for g.
3. Let $f(x)=\frac{x+2}{x-4}$ be a function. Answer the following questions:
a) What is the domain of the function?
b) Find $f(0), f(-1), f(-x)$.
4. A graph is shown. Answer the following questions:
a)Does the graph represent a function? Why?
b) Find $f(-4), f(2), f(4)$.
c) What is the domain of the function?
d) What is the range of the function?

5. Let $f(x)=2 x+3$ and $g(x)=1-x$ be two functions. Find the following and simplify:
a) $(f+g)(x)$
b) $(f+g)(2)$
c) $(f-g)(1)$
d) $(f g)(x)$
6. The figure shows the number of hours, H, that the sun is above the horizon in Peoria, Illinois, on day t, where January 1 corresponds to $t=0$.

a) Which variable is independent, and which is dependent?
b) Approximately how many hours of sunlight are there in Peoria on day 150 ?
c) On which days are there 12 hours of sunlight?
d) What are the maximum and minimum values of H , and when do these values occur?

Quiz HI- よow
(1)

$$
\begin{aligned}
& 2 t-4(1-3 t)=t+15 \\
& 2 t-4+12 t=t+15 \\
& 14 t-4=t+15 \\
& 14 t-t=15+4 \\
& 13 t=19 \\
& t=\frac{19}{13}
\end{aligned}
$$

(b)

$$
\begin{aligned}
& \frac{5}{\frac{x}{2}}-\frac{1}{10}={ }^{2} \frac{x}{5}+\frac{5}{2} \\
& \angle 10=10 \\
& 5 x-1=2 x+5 \\
& 5 x-2 x=5+1 \\
& 3 x=6 \\
& x=2
\end{aligned}
$$

$$
\begin{aligned}
& \text { (c) } \frac{6 / 2 a-1}{2}-\frac{4 / 3 a-1}{3}=\frac{3 / 4 a-1}{4} \\
& 4(0=12 \\
& 6(2 a-1)-4(3 a-1)=3(4 a-1) \\
& 12 / a-6-12 a+4=12 a-3 \\
& -2=12 a-3 \\
& 3-2=12 a \\
& 1=12 a \\
& a=\frac{1}{12}
\end{aligned}
$$

(d)

$$
\begin{aligned}
& 0.8(0.3 p-0.5)=0.8 / 1100 \\
& 8(3 p-5)=80 \\
& 24 p-40=80 \\
& 24 p=120 \\
& p=5
\end{aligned}
$$

(2) (a)

$$
\begin{aligned}
V & =\frac{1}{3} B h \quad \text { for } h \\
3 V & =B h \\
h & =\frac{3 V}{B}
\end{aligned}
$$

(b) $E=I(R+r)$ for r

$$
\begin{aligned}
& R+r=\frac{E}{i} \\
& r=\frac{E}{i}-R \quad \text { or } \quad r=\frac{E-R i}{i}
\end{aligned}
$$

(c)

$$
\begin{aligned}
& s=v t+g t^{2} \text { for } g \\
& s-v t=g t^{2} \\
& g=\frac{s-v t}{t^{2}}
\end{aligned}
$$

(3) $f(x)=\frac{x+2}{x-4}$
(a)

$$
\begin{aligned}
& \text { conditim: } \begin{array}{l}
x-4 \neq 0 \\
\\
x \neq 4
\end{array} \\
& \text { Domain }=\mathbb{R} \mid\{4\} /
\end{aligned}
$$

(b)

$$
\begin{aligned}
f(0) & =\frac{0+2}{0-4} \\
& =\frac{2}{-4} \quad \quad f(0)=-\frac{1}{2} \\
& =-\frac{1}{2} \quad f
\end{aligned}
$$

$$
\begin{array}{ll}
f(-1)=\frac{-1+2}{-1-4}=\frac{1}{-5} \quad(f(-1)=-1 \\
f(-x)=\frac{-x+2}{-x-4} \text { on } \quad f(-x)=\frac{x-2}{x+4}
\end{array}
$$

(4) (a) Yes, becouck it passes the luertical line test
(amy vertical line has at most one common proint mith the sropa)

$$
\begin{array}{ll}
\text { (b) } \begin{array}{ll}
f(-4)=? \\
x=-4, y=? & f(-4)=2 \\
f(2)=? & \\
x=2, y=? & f(2)=-2 \\
f(4)=? & f(4)=-2
\end{array}, f, & f,
\end{array}
$$

$$
x=4, y=2
$$

(c) Domain: $x \in \mathbb{R}$
(d) Raugc: $y \in[-2,2]$
(5) $f(x)=2 x+3$
$g(x)=1-x$
(a)

$$
\begin{aligned}
& \text { a) } \begin{array}{l}
(f+g)(x)=f(x)+g(x) \\
=(2 x+3)+(1-x) \\
=x+4 \\
(f+g)(x)=x+4
\end{array}, \$ \text { (f)}
\end{aligned}
$$

(b)

$$
\begin{aligned}
& (f+g)(z)=2+4 \\
& (f+g)(z)=6
\end{aligned}
$$

(und (a))

$$
\begin{aligned}
& \text { (c) }(f-g)(1)=f(1)-g(1) \\
& =(2.1+3)-(1-1) \quad(f-g)(1)=5 \\
& =5-0=5
\end{aligned}
$$

$$
\begin{aligned}
\text { (d) } & (f g)(x)=f(x) g(x) \\
& =(2 x+3)(1-x) \\
& =2 x-2 x^{2}+3-3 x \\
& (f g)(x)=-2 x^{2}-x+3
\end{aligned}
$$

(6) $t=\#$ days
$H=\#$ hours the sun is above the Ton'on
(a) prendent variable (ingnt)
$t=$ nidependent variable (in put)
$H=$ dependent variake (ont poid)
(b) when $t=150, H=$?

$$
H=14.5 \text { hours }
$$

(c) wheu $H=12 \mathrm{ha}, t=$? $t \simeq 80$ doys p^{n} $t \simeq 270$ doys
(d)
$H_{\text {mox }} \approx 15 \mathrm{his}$ on $t=175 \mathrm{dog}$ $H_{\text {min }} \approx 9$ ho on $t \approx 350$ doss

