QUIZ #1 Solutions

Write in a neat and organized fashion. Use a pencil. Show all work to get credit.

1) Write the converse, inverse, and contrapositive of the following statement.

You cannot comprehend geometry if you do not know how to reason deductively.

 $P \rightarrow Q$: If you do not know how to reason deductively, then you cannot comprehend geometry.

$\frac{\text{Converse}}{Q \to P}$	If you cannot comprehend geometry, then you do not know how to reason deductively.
$\frac{\text{Inverse}}{\sim P \rightarrow \sim Q}$	If you know how to reason deductively, then you can comprehend geometry.
$\frac{\text{Contrapositive}}{\sim Q \rightarrow \sim P}$	If you can comprehend geometry, then you know how to reason deductively.

2) If P is true, Q is false, and R is true, find the truth value of

$$(\sim P \land Q) \rightarrow (Q \lor R)$$
$$(\sim T \land F) \rightarrow (F \lor T)$$
$$(F \land F) \rightarrow T$$
$$F \rightarrow T$$
$$T$$

So the statement is true.

3) Complete the following to make valid arguments:

a) Premise 1:	$A \rightarrow B$
---------------	-------------------

Premise 2: $\sim B$

Conclusion: $\sim A$

c) Premise 1: $M \lor N$

Premise 2: $\sim M$

Conclusion: N

b)	Premise 1:	$P \rightarrow Q$
	Premise 2:	$Q \rightarrow R$
	Conclusion:	$P \rightarrow R$
d)	Premise 1:	$C \rightarrow D$
	Premise 2:	С
	Premise 2: Conclusion:	C D

4) a) Write the negation of $P \wedge Q$; that is, complete the statement: $\sim (P \wedge Q) \equiv \sim P \vee \sim Q$

b) Prove the above law using a truth table. Explain in words why the table shows that the two statements are equivalent.

Р	Q	$\sim (P \land Q)$	$\sim P \lor \sim Q$
Т	Т	F T	F F F
Т	F	TF	F T T
F	Т	T F	ΤΤΓ
F	F	TF	Т Т Т

The two statements are logically equivalent because their truth values are the same for all possible true/false combinations of their components.

5) State whether each argument is VALID or INVALID:

- a) All contractors use cell phones.
- b) Doug does not use a cell phone.

Doug is not a contractor.

Valid.

a) All people who apply for a loan must pay for a title search.b) Cindy paid for a title search.

Cindy applied for a loan. Invalid.

6) Given the figure, name:

a) three acute angles

 $\angle 1, \angle 2, \angle 4$

b) Two right angles

 $\angle 3, \angle AVC$

c) One obtuse angle

 $\angle EVA$ (or DVB, EVC)

d) One straight angle $\angle EVB$ (or DVA)

e) Two complementary angles $\angle 1$ and $\angle 2$

g) Two adjacent angles $\angle 3$ and $\angle 4$

i) Two opposite rays $\overrightarrow{VA}, \overrightarrow{VD}$ (or $\overrightarrow{VE}, \overrightarrow{VB}$)

h) Two nonadjacent angles $\angle 1$ and $\angle 3$

j) Three noncollinear points.

 $\begin{array}{c} D, V, B \\ k) \text{) Two vertical angles} \\ \angle 1 \text{ and } \angle 4 \end{array}$

9) State the hypothesis and conclusion for each statement.

a) If a triangle is isosceles, then the triangle has two congruent sides.

Hypothesis: A triangle is isosceles.

Conclusion: The triangle has two congruent sides.

b) Two angles are congruent if they are both right angles. If two angles are right angles, then they are congruent.

Hypothesis: Two angles are right angles Conclusion: The two angles are congruent.

c) Vertical angles are congruent.If two angles are vertical, then they are congruent.

Hypothesis: Two angles are vertical. Conclusion: The angles are congruent.

d) Two equal supplementary angles are right angles.If two angles are equal and supplementary, then they are right angles.

Hypothesis: Two angles are equal and supplementary. Conclusion: The angles are right angles.

e) Complements of equal angles are equal in measure.

If two angles are equal in measure, then their complements are equal, too.

Hypothesis: Two angles are equal in measure Each angle has a given complement. Conclusion: The complements are equal in measure.

10) a) Do the following:

- Draw an angle ABC.

- Let *D* a point in the interior of the given angle.

- Draw ray *BD*.

b) If $m \angle ABD = 2x + 9$, $m \angle DBC = 3x - 2$, and $m \angle ABC = 67^{\circ}$ find *x* (formal proof: two column proof).

Proof

Statements

1. $\angle ABC, D \in int \angle ABC$ 2. $m \angle ABD + m \angle DBC = m \angle ABC$ 3. $m \angle ABD = 2x + 9, m \angle DBC = 3x - 2, m \angle ABC = 67^{\circ}$ 4. 2x + 9 + 3x - 2 = 67(2,3) 5. 5x + 7 = 676. 5x = 607. x = 12

Q.E.D.

$7^{\circ}, \qquad D \rightarrow B \qquad A$

Reasons

1. Given

- 2. Angle-Addition Postulate
- 3. Given
- 4. Substitution

5. Simplifying (combining like terms or distributive property)6. Addition/Subtraction property for equality7. Multiplication/Division property for equality