QUIZ \#1 Solutions

Write in a neat and organized fashion. Use a pencil. Show all work to get credit.

1) Write the converse, inverse, and contrapositive of the following statement.

You cannot comprehend geometry if you do not know how to reason deductively.
$P \rightarrow Q$: If you do not know how to reason deductively, then you cannot comprehend geometry.

Converse If you cannot comprehend geometry, then you do not know how to reason
$Q \rightarrow P$
Inverse
$\sim P \rightarrow \sim Q$
Contrapositive If you can comp rehend geometry, then you know how to reason deductively. $\sim Q \rightarrow \sim P$ deductively.

If you know how to reason deductively, then you can comprehend geometry.
2) If P is true, Q is false, and R is true, find the truth value of

$$
\begin{aligned}
& (\sim P \wedge Q) \rightarrow(Q \vee R) \\
& (\sim T \wedge F) \rightarrow(F \vee T) \\
& (F \wedge F) \rightarrow T \\
& F \rightarrow T \\
& T
\end{aligned}
$$

So the statement is true.
3) Complete the following to make valid arguments:
a) Premise 1: $\quad A \rightarrow B$
Premise 2: $\quad \sim B$
Conclusion: $\sim A$
c) \quad Premise 1: $\quad M \vee N$
Premise 2: $\quad \sim M$
Conclusion: N
b) \quad Premise 1: $\quad P \rightarrow Q$

Premise 2: $\quad Q \rightarrow R$
Conclusion: $\quad P \rightarrow R$
d) \quad Premise 1: $\quad C \rightarrow D$

Premise 2: $\quad C$
Conclusion: $\quad D$
4) a) Write the negation of $P \wedge Q$; that is, complete the statement: $\sim(P \wedge Q) \equiv \sim P \vee \sim Q$
b) Prove the above law using a truth table. Explain in words why the table shows that the two statements are equivalent.

P	Q	$\sim(P \wedge Q)$	$\sim P \vee$	$\sim Q$		
T	T	F	T	F	F	F
T	F	T	F	F	T	T
F	T	T	F	T	T	F
F	F	T	F	T	T	T

The two statements are logically equivalent because their truth values are the same for all possible true/false combinations of their components.
5) State whether each argument is VALID or INVALID:
a) All contractors use cell phones.
b) Doug does not use a cell phone.

Doug is not a contractor.
Valid.
a) All people who apply for a loan must pay for a title search.
b) Cindy paid for a title search.

Cindy applied for a loan.
Invalid.
6) Given the figure, name:
a) three acute angles

$$
\angle 1, \angle 2, \angle 4
$$

b) Two right angles

$$
\angle 3, \angle A V C
$$

c) One obtuse angle

$$
\angle E V A(\text { or } D V B, E V C)
$$

d) One straight angle

$$
\angle E V B(\text { or } D V A)
$$

e) Two complementary angles $\angle 1$ and $\angle 2$
g) Two adjacent angles
$\angle 3$ and $\angle 4$
i) Two opposite rays

$$
\overrightarrow{V A}, \overrightarrow{V D} \quad \text { (or } \overrightarrow{V E}, \overrightarrow{V B})
$$

f) Two supplementary angles
$\angle 1$ and $\angle 5$
h) Two nonadjacent angles
$\angle 1$ and $\angle 3$
j) Three noncollinear points.

$$
D, V, B
$$

k)) Two vertical angles
$\angle 1$ and $\angle 4$
7) a) Draw a line. Name it using math notation.

b) Draw a line segment. Name it using math notation.

8) Complete the following Postulates and make a drawing to illustrate each one.
a) Two distinct points determine a line.

b) Given two distinct points in a plane, the line through these points is in the plane.
c) Segment-Addition Postulate:

If D is a point on a segment $A L$, the $1 D+D L=A L$

d) Angle - Addition Postulate:

If A is a point in the interior of the angle $P Q R$, then $m \angle P Q A+m \angle A Q P=m \angle P Q R$

9) State the hypothesis and conclusion for each statement.
a) If a triangle is isosceles, then the triangle has two congruent sides.

Hypothesis: A triangle is isosceles.
Conclusion: The triangle has two congruent sides.
b) Two angles are congruent if they are both right angles.

If two angles are right angles, then they are congruent.
Hypothesis: Two angles are right angles
Conclusion: The two angles are congruent.
c) Vertical angles are congruent.

If two angles are vertical, then they are congruent.
Hypothesis: Two angles are vertical.
Conclusion: The angles are congruent.
d) Two equal supplementary angles are right angles.

If two angles are equal and supplementary, then they are right angles.
Hypothesis: Two angles are equal and supplementary.
Conclusion: The angles are right angles.
e) Complements of equal angles are equal in measure.

If two angles are equal in measure, then their complements are equal, too.
Hypothesis: Two angles are equal in measure
Each angle has a given complement.
Conclusion: The complements are equal in measure.
10) a) Do the following:

- Draw an angle $A B C$.
- Let D a point in the interior of the given angle.
- Draw ray BD.
b) If $m \angle A B D=2 x+9, m \angle D B C=3 x-2$, and $m \angle A B C=67^{\circ}$, find x (formal proof: two column proof).

Proof

Statements

1. $\angle A B C, D \in$ int $\angle A B C$
2. $m \angle A B D+m \angle D B C=m \angle A B C$
3. $m \angle A B D=2 x+9, m \angle D B C=3 x-2, m \angle A B C=67^{\circ}$
4. $2 x+9+3 x-2=67$
$(2,3)$
5. $5 x+7=67$
6. $5 x=60$
7. $x=12$
Q.E.D.

Reasons

1. Given
2. Angle-Addition Postulate
3. Given
4. Substitution
5. Simplifying (combining like terms or distributive property)
6. Addition/Subtraction property for equality
7. Multiplication/Division property for equality
