QUIZ #1 @ 85 points

Solve the problems on separate paper. Clearly label the problems. Show all steps in order to get credit. No proof, no credit given

1. Solve the following equations:

a)
$$2x^2 = 10x$$

b)
$$(3t+1)^2 = 16$$

c)
$$2x^2 + x = 1$$

d)
$$x^3 + 4x^2 - 9x - 36 = 0$$

- 2. Find the remaining sides of a $30^{\circ} 60^{\circ} 90^{\circ}$ if the shortest side is 1.
- 3. Draw an angle of 135° in standard position.
 - a) Find a point on the terminal side of the angle.
 - b) Find the distance from the origin to that point.
 - c) Find two other angles that are coterminal with the given angle, one positive and one negative. Mark them on the drawing.
 - d) What is the equation of the line containing the terminal side of the angle?
- 4. Find the remaining functions of \mathbf{q} if $\cos \mathbf{q} = \frac{3}{4}$ and \mathbf{q} terminates in quadrant IV.
- 5. Make a drawing of the angle q and indicate the quadrants in which the terminal side of q must lie in order that

a)
$$\cos q > 0$$

b)
$$\sin q < 0$$

c)
$$\tan q < 0$$

6. Simplify the following expressions:

a)
$$\frac{\sin x}{\cos x} + \frac{1}{\sin x}$$

b)
$$(1-\sin a)(1+\sin a)$$

(1) a)
$$2x^{2} = 10x$$

 $2x^{2} - 10x = 0$
 $2x(x-5) = 0$
 $x = 0$ 0 $x - 5 = 0$
 $x = 5$
 $x = 5$

6)
$$(3t+1)^2 = 16$$

$$\sqrt{(3t+1)^2} = \sqrt{16}$$

$$3t+1 = \frac{7}{3} + \frac{4}{3} = 1$$

$$t = -\frac{1}{3} + \frac{1}{3} + \frac{1}{3} = \frac{1}{3}$$

$$t = \frac{1}{3} + \frac{1}{3} + \frac{1}{3} = \frac{1}{3}$$

$$t = \frac{1}{3} + \frac{1}{3} + \frac{1}{3} = \frac{1}{3}$$

c)
$$2x^{2} + x = 1$$

 $2x^{2} + x - 1 = 0$
 $x = -\frac{b}{2} + \sqrt{\frac{b^{2} - 4ac}{2a}}$ $\begin{vmatrix} a = 2 \\ b = 1 \\ c = -1 \end{vmatrix}$
 $x = -\frac{1!}{2(a)} + \sqrt{\frac{1!}{2}(\frac{4}{2})} = -\frac{1!}{4} + \sqrt{\frac{9}{9}} = -\frac{1!}{4} = \frac{1!}{4}$

$$x = \frac{-1+3}{4} = \frac{2}{5} = \frac{2}{5} = 0R$$

$$x = \frac{-1-3}{5} = \frac{-1}{5} = \frac{1}{5} = \frac{1}$$

d)
$$x^{3} + 4x^{2} - 9x - 36 = 0$$

 $x^{2}(x+4) - 9(x+4) = 0$
 $(x+4)(x^{2}-9) = 0$
 $(x+4)(x-3)(x+3) = 0$
 $y = -4 \text{ or } x = 3 \text{ or } x = -3$
 $|x \in (5-4, 3, -3)|$

then
$$AB = aleostest$$
 side => $AB = 1$
 $AB = \frac{BC}{2} => BC = 2AB$
 $BC = 2$

$$AC^{2} + AB^{2} = BC^{2}$$

 $AC^{2} = BC^{2} - AB^{2} = 2^{2} - 1^{2}$
 $AC^{2} = 3$, $AC = \sqrt{3}$

 $\theta = 135^\circ \Rightarrow (AoC = 45^\circ)$ $\Rightarrow AoC - inceles, AC = OC$ $A(x,y) \in M$

b)
$$A0 = ?$$
 $A0^2 = x^2 + y^2 = 2$
 $A0 = \sqrt{2}$
 $A0 = \sqrt{$

d) y=-x
c) coternind aucles:
$$\frac{360^{\circ} + /35^{\circ} = 495^{\circ}}{-(360^{\circ} - 135^{\circ}) = -225^{\circ}}$$

The Hand
$$\overline{I}$$
 $cos\theta = \frac{3}{4}$, $\theta \in \overline{I0}$
 $sin^2\theta + cos^2\theta = 1$
 $sin^2\theta = 1 - cos^2\theta$
 $sin^2\theta = 1 - (\frac{3}{4})^2$
 $tin^2\theta = \frac{7}{16}$
 $tin^2\theta = \frac{7}{16}$
 $sin\theta = \frac{7}{4}$
 $\theta \in \overline{I0} = 7 \sin\theta < 0 = 7$
 $sin\theta = -\frac{\sqrt{7}}{4}$
 $sin\theta = -\frac{\sqrt{7}}{4}$

cas
$$\theta = \frac{3}{4}$$
, $\theta \in 10$
 $\sin^2 \theta + \cos^2 \theta = 1$
 $\sin^2 \theta = 1 - \frac{10}{16}$
 $\sin^2 \theta = 1 - \frac{9}{16}$
 $\sin \theta = \frac{7}{16}$
 $\sin \theta = \frac{7}{16}$
 $\sin \theta = -\frac{\sqrt{7}}{4}$
 $\cot \theta = \frac{3}{4}$
 $\cot \theta = \frac{3}{4}$

$$8i\partial^{2}\theta = 1 - (\frac{3}{4})^{2}$$

$$8i\partial^{2}\theta = 1 - \frac{9}{16}$$

$$5i\partial^{2}\theta = \frac{7}{16}$$

$$5i\partial^{2}\theta = \frac{7}{16}$$

$$8i\partial^{2}\theta = \frac{7}{16}$$

$$8i\partial^{2}$$

(5) a) cool > 0 iff
$$\theta \in \overline{I}$$
 or \overline{IV}

for example $\frac{1}{\sqrt{2}}$ > $\frac{1}{\sqrt{2}}$