QUIZ \#1 @ 85 points

Solve the problems on separate paper. Clearly label the problems. Show all steps in order to get credit. No proof, no credit given

1. Solve the following equations:
a) $2 x^{2}=10 x$
b) $(3 t+1)^{2}=16$
c) $2 x^{2}+x=1$
d) $x^{3}+4 x^{2}-9 x-36=0$
2. Find the remaining sides of a $30^{\circ}-60^{\circ}-90^{\circ}$ if the shortest side is 1 .
3. Draw an angle of 135° in standard position.
a) Find a point on the terminal side of the angle .
b) Find the distance from the origin to that point.
c) Find two other angles that are coterminal with the given angle, one positive and one negative.

Mark them on the drawing.
d) What is the equation of the line containing the terminal side of the angle?
4. Find the remaining functions of θ if $\cos \theta=\frac{3}{4}$ and θ terminates in quadrant $I V$.
5. Make a drawing of the angle θ and indicate the quadrants in which the terminal side of θ must lie in order that
a) $\cos \theta>0$
b) $\sin \theta<0$
c) $\tan \theta<0$
6. Simplify the following expressions:
a) $\frac{\sin x}{\cos x}+\frac{1}{\sin x}$
b) $(1-\sin a)(1+\sin a)$

Quiz - Locernions
(1)a)

$$
\begin{aligned}
& 2 x^{2}=10 x \\
& 2 x^{2}-10 x=0 \\
& 2 x(x-5)=0 \\
& x=0 \text { or } x-5=0 \\
& x=5 \\
& x \in\{0,5\}
\end{aligned}
$$

b)

$$
\begin{aligned}
& (3 t+1)^{2}=16 \quad / \sqrt{ } \\
& \sqrt{(3 t+1)^{2}}=\sqrt{16} \\
& 3 t+1=4 \\
& 3 t=-1 \pm 4 \\
& t=\frac{-1 \pm 4}{3}<t=\frac{-114}{3}=1 \\
& t=\frac{-1-4}{3}=\frac{-5}{3} \\
& \left|t \in\left\{1, \frac{-5}{3}\right\}\right|
\end{aligned}
$$

c)

$$
\begin{aligned}
& 2 x^{2}+x=1 \\
& 2 x^{2}+x-1=0 \\
& x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \quad\left\{\begin{array}{l}
a=2, \\
b=1 \\
c=-1
\end{array}\right. \\
& x=\frac{-1 \pm \sqrt{1-2}-4(2)(-1)}{2(2)}=\frac{-1 \pm \sqrt{9}}{4}=\frac{-1 \pm 3}{4} \\
& x=\frac{-1+3}{4}=\frac{2}{4}=\frac{-1}{2} \quad \text { on } \\
& x=\frac{-1-3}{y}=-1 \\
& x \in\left\{\frac{1}{2},-1\right\}
\end{aligned}
$$

d)

$$
\begin{aligned}
& x^{3}+4 x^{2}-9 x-36=0 \\
& x^{2}(x+4)-9(x+4)=0 \\
& (x+4)\left(x^{2}-9\right)=0 \\
& (x+4)(x-3)(x+3)=0 \\
& x=-4 \text { ox } x=3 \\
& x \in\{-4,3,-3\}
\end{aligned}
$$

(2)

$\triangle A B C$

$$
C=30^{\circ}
$$

$$
B=60^{\circ}
$$

then $A B=$ oleortest wide $\Rightarrow A B=1$

$$
\begin{aligned}
& A B=\frac{B C}{2} \Rightarrow B C=2 A B \\
& B C=2 \\
& A C^{2}+A B^{2}=B C^{2} \\
& A C^{2}=B C^{2}-A B^{2}=2^{2}-12 \\
& A C^{2}=3, \quad A C=\sqrt{3}
\end{aligned}
$$

(3)

$$
\theta=135^{\circ} \Rightarrow \angle A O C=45^{\circ}
$$

$$
\begin{aligned}
& \Rightarrow \angle A O C=45^{\circ} \\
& \Rightarrow \triangle A O C \text { isicceles, } A C=O C
\end{aligned}
$$

$$
A(x, y) \in \text { III }
$$

a) $A(-1,1)$
$A(-1,1)$
or, in gueral $P(-a, a)$
where $a>0$
b)

$$
\begin{aligned}
& A O=? \\
& A O^{2}=x^{2}+y^{2}=2 \\
& A O=\sqrt{2}
\end{aligned}
$$

$D R$, iu greustal

$$
\begin{aligned}
& P_{0}^{2}=x^{2}+y^{2} \\
& P_{0}^{2}=a^{2}+a^{2} \\
& P_{0}^{2}=2 a^{2} \\
& P_{0}=a \sqrt{2}, a>0
\end{aligned}
$$

d)

$$
y=-x
$$

c) cotermind augles:

$$
\begin{aligned}
& 360^{\circ}+135^{\circ}=495^{\circ} \\
& -\left(360^{\circ}-135^{\circ}\right)=-2250
\end{aligned}
$$

(4) Metleod I

$$
\begin{aligned}
& \cos \theta=\frac{3}{4}, \quad \theta \in I V \\
& \sin ^{2} \theta+\cos ^{2} \theta=1 \\
& \sin ^{2} \theta=1-\cos ^{2} \theta \\
& \sin ^{2} \theta=1-\left(\frac{3}{4}\right)^{2} \\
& \sin ^{2} \theta=1-\frac{9}{16} \\
& \sin ^{2} \theta=\frac{7}{16} \\
& \sin \theta= \pm \frac{\sqrt{7}}{4} \\
& \theta \in \frac{15}{\rightarrow \sin \theta<0 \Rightarrow} \sin \theta=-\frac{\sqrt{3}}{4}
\end{aligned}
$$

Method I

$$
\cos \theta=\frac{3}{4}
$$

$$
\cos \theta=\frac{x}{r}
$$

Let $x=3, r=4$
Then, $\triangle A O B$:

$$
\begin{aligned}
& A B^{2}=O B^{2}-O A^{2} \\
& A B^{2}=16-9=7 \\
& A B= \pm \sqrt{7}
\end{aligned}
$$

$$
\theta \in \mathbb{I} \Rightarrow \begin{aligned}
& A B= \pm \sqrt{7} \\
& y<0 \Rightarrow y=-\sqrt{7}
\end{aligned}
$$

$$
\sin \theta=\frac{y}{r}
$$

$$
\sin \theta=\frac{-\sqrt{7}}{4}
$$

Then $\tan \theta=\frac{\sin \theta}{\cos \theta}=\frac{-\sqrt{7}}{3}$
$\cot \theta=\frac{1}{\tan \theta}=-\frac{3}{\sqrt{1}}=\frac{-3 \sqrt{7}}{7}$
$\sec \theta=\frac{1}{\cos \theta}=\frac{4}{3}$

$$
\csc \theta=\frac{1}{\sin \theta}=\frac{-4}{\sqrt{7}}=\frac{-4 \sqrt{7}}{7}
$$

(5) a) $\cos \theta>0$ iff $\theta \in$ Ior IV

($\mathrm{H} \in \cos \theta=\frac{x}{r}, \cos \theta>0$ iff $x>0$)
b) $\sin \theta<0$ iff $\theta \in$ III or IV

$$
\binom{d c \sin \theta=\frac{y}{r}}{\sin \theta<0 \text { ift } y<0}
$$

c) $\tan \theta<0$ iff $\theta \in$ II or IV for exaugte,

$(b) c \tan \theta=\frac{x}{x}$ $\tan \theta<0$ iff x, y have opposite.
(6) (a) $\frac{\frac{\sin x}{\sin x}}{\cos x}+\frac{\cos x}{\sin x}=\frac{\sin ^{2} x+\cos x}{\sin x \cos x}$

LCD $=\sin x \cos x$
(b) $(1-\sin a)(1+\sin a)=$
$=\frac{1-\sin ^{2} a}{\cos ^{2} a}$
$=\cos ^{2} a$

