TEST 3 @ 130 points

Write in a neat and organized fashion. Write your complete solutions on SEPARATE PAPER. You should use a pencil. For an exercise to be complete there needs to be a detailed solution to the problem. Do not just write down an answer. No proof, no credit given! Clearly label each exercise.

1. Solve each equation in \mathbb{C} (the set of complex numbers) by the indicated method.
a) $5(x-2)^{2}+38=0$ by the square root property.
b) $3 x^{2}-2 x+5=0$ by completing the square.
c) $x^{2}+\frac{x}{3}=\frac{3}{2}$ by the quadratic formula.
d) Solve $3 x^{2}+x y+y^{2}=2$ for y.
2. Solve the following equations.
a) $2 x^{4}-x^{2}-3=0$
b) $\log _{4}(2 x-1)=3$
c) $3^{x}=8$
d) $\log _{8}(x+5)-\log _{8} 2=1$
e) $5^{x}=3^{2 x-1}$
3. Solve the following inequalities.
a) $x^{2}-6 x+5 \leq 0$
b) $\frac{1}{x+3}<\frac{1}{x-2}$
4. Let $f(x)=3 x-1$ and $g(x)=\frac{3-x}{x+1}$. Answer the following questions:
a) Find $(g \circ f)(x)$.
b) $(f \circ g)(2)$
c) Find $f^{-1}(x)$.
d) Find $g^{-1}(x)$.
5. Simplify the following expressions.
a) $4 \ln x+7 \ln y-3 \ln z$
b) $\frac{1}{2}\left(\log _{5} x+\log _{5} y\right)-2 \log _{5}(x+1)$
c) $\log _{3} 405-\log _{3} 5+\log 5+\log 2$
d) $\log _{4}\left(\log _{2} 16\right)$
6. For the equation given bebw, answer all the questions and graph the function (Be sure to label the axes and all points used). SHOW ALL WORK!

$$
y=-2 x^{2}+x+6
$$

a) What type of curve is this?
b) What is the y-intercept?
c) What is the vertex
d) What are the x-intercept(s) (if any)?
e) What is the domain of the function?
f) What is the range of the function?
g) Using the graph above, solve the following inequality: $-2 x^{2}+x+3<0$
h) What is the vertex form of the equation?
7. Graph $f(x)=2^{x}$ and $f^{-1}(x)=\log _{2} x$ on the same coordinate system showing the symmetry about the bisector line $y=x$. Label the axes and all the points.
8) The number of bacteria present in a culture after t hours is given by the formula $N=1000 e^{0.69 t}$.
a) How many bacteria will be there after $1 / 2$ hour?
b) How long will it be before there are $1,000,000$ bacteria?
c) What is the doubling time
9) The owners of a small fruit orchard decide to produce gift baskets as a sideline. The cost per basket for
producing x baskets is $\quad C=0.01 x^{2}-2 x+120$. How many baskets should they produce in order to minimize the cost per basket? What will their total cost be at that production level?

TET \#3- SOCHDIONS
(1) (a)

$$
5(x-2)^{2}+38=0
$$

$$
\begin{aligned}
& 5(x-2)^{2}=-38 \\
& (x-2)^{2}=\frac{-38}{5} \\
& \sqrt{(x-2)^{2}}=\sqrt{\frac{-38}{5}} \\
& x-2= \pm \frac{i \sqrt{38}}{\sqrt{5}} \\
& x-2= \pm \frac{i \sqrt{38 \cdot 5}}{5} \\
& x=2 \pm \frac{i \sqrt{190}}{5}
\end{aligned}
$$

$$
\begin{aligned}
& \text { (6) } \begin{array}{l}
3 x^{2}-2 x+5=0 \\
3 x^{2}-2 x=-5 \\
x^{2}-\frac{2}{3} x=\frac{-5}{3} / \div 3 \\
\left(\frac{1}{2} \operatorname{coc}(x)^{2}=\left(\frac{1}{9} \frac{1}{3}\right)^{2}=\frac{1}{9}\right. \\
x^{2}-\frac{2}{3} x+\frac{1}{9}=\frac{-5}{3}+\frac{1}{9} \\
\left(x-\frac{1}{3}\right)^{2}=\frac{-14}{9} / \sqrt{ } \\
\sqrt{\left(x-\frac{1}{3}\right)^{2}}=\sqrt{\frac{-14}{9}} \\
x-\frac{1}{3}= \pm \frac{1 \sqrt{14}}{3} \\
x=\frac{1 \pm i \sqrt{14}}{3}
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \text { (c) }{ }^{6 / x^{2}+\frac{x}{3}=\frac{3}{2}} \\
& \angle C 0=6 \\
& 6 x^{2}+2 x=9 \\
& 6 x^{2}+2 x-9=0 \\
& \begin{array}{l}
a=6 \\
6=+2 \quad x=\frac{-6 \pm \sqrt{6^{2}-4 a c}}{2 a} \\
c=-9 \\
x=\frac{+(-2) \pm \sqrt{\left.(+2)^{2}-4 / 6\right)(-9)}}{2(6)} \\
x=\frac{-2 \pm \sqrt{220}}{12}=\frac{-2 \pm \sqrt{2^{2} \cdot 5 \cdot 11}}{12} \\
=\frac{-2 \pm 2 \sqrt{55}}{12}=\frac{2(-1 \pm \sqrt{55})}{12} \\
x=\frac{-1 \pm \sqrt{55}}{6}
\end{array}
\end{aligned}
$$

(4) $3 x^{2}+x y+y^{2}=2$ for y

$$
\begin{aligned}
& y^{2}+x y+3 x^{2}-2=0 \\
& a=1 \\
& b=x \\
& c=3 x^{2}-2 \quad y=\frac{-6 \pm \sqrt{b^{2}-4 a c}}{2 a} \\
& y=\frac{-x \pm \sqrt{x^{2}-4(1)\left(3 x^{2}-2\right)}}{2(1)}
\end{aligned}
$$

$$
y=\frac{-x \pm \sqrt{x^{2}-12 x^{2}+8}}{2}
$$

$$
y=\frac{-x \pm \sqrt{8-11 x^{2}}}{2}
$$

(2) (a) $2 x^{4}-x^{2}-3=0$
let $x^{2}=t$
then $x^{4}=t^{2}$
then $2 t^{2}-t-3=0$

$$
\begin{aligned}
& t=\frac{-(-1) \pm \sqrt{(-1)^{2}-4(2)(-3)}}{2(2)} \\
& t=\frac{1 \pm \sqrt{1+24}}{4}=\frac{1 \pm 5}{4} \\
& t=-1 \text { OR } \quad t=\frac{6}{4}=\frac{3}{2}
\end{aligned}
$$

$$
\begin{array}{rr}
\text { Tif } t=-1 & \text { II } i f t=\frac{3}{2} \\
x^{2}=-1 & x^{2}=\frac{3}{2} \\
\sqrt{x^{2}=\sqrt{-1}} & \sqrt{x^{2}}=\sqrt{\frac{3}{2}} \\
x= \pm i \quad & x= \pm \frac{\sqrt{3}}{\sqrt{2}}=\frac{\sqrt{6}}{2} \\
x= \pm \frac{\sqrt{6}}{2}
\end{array}
$$

$$
\left.\left\lvert\, x+\{ \pm i) \pm \frac{\sqrt{6}}{2}\right.\right\}
$$

(b) $\log _{4}(2 x-1)=3$
condition: $\quad 2 x-1>0$

$$
\begin{aligned}
& 2 x>1 \\
& x>\frac{1}{2}
\end{aligned}
$$

$$
\begin{aligned}
& 4^{3}=2 x-1 \\
& 2 x=65 \\
& x=\frac{65}{2}>\frac{1}{2} \\
& x=\frac{65}{2}
\end{aligned}
$$

(c)

$$
\frac{\log _{3} 3^{x}=\log _{3} 8}{x=\log _{3} 8}
$$

$$
\begin{aligned}
& 3^{x}=8 \quad / \ln \\
& \ln 3^{x}=\ln 8 \\
& x \ln 3=\ln 8 \\
& x=\frac{\ln 8}{\ln 3} \quad \approx 1.89
\end{aligned}
$$

(d) $\log _{8}(x+5)-\log _{8} 2=1$

Concition: $\frac{x+5>0}{x>-5}$

$$
\begin{aligned}
& \log _{8} \frac{x+5}{2}=1 \\
& 8^{\prime}=\frac{x+5}{2}
\end{aligned}
$$

$$
x+5=16
$$

$$
x=19>-5
$$

$$
x=411
$$

$$
x=11
$$

$$
\begin{aligned}
& \text { (c) } 5^{x}=3^{2 x-1} \quad \ln \\
& \ln 5^{x}=\ln 3^{2 x-1} \\
& x \ln 5=(2 x-1) \ln 3 \\
& x \ln 5=2 x \ln 3-\ln 3 \\
& \ln 3=2 x \ln 3-x \ln 5 \\
& \ln 3=x(2 \ln 3-\ln 5) \\
& x=\frac{\ln 3}{\ln 3-\ln 5}=\frac{\ln 3}{\ln 9-\ln 5} \\
& x \approx 1.87
\end{aligned}=\frac{\ln 3}{\ln 5}
$$

$$
\begin{aligned}
& \text { (b) } \frac{1}{x+3}<\frac{1}{x-2} \\
& 0<\frac{1}{x-2}-\frac{x-1}{x+3} \\
& \frac{x+3-(x-2)}{(x-2)(x+3)}>0 \\
& \frac{x+3-x x+2}{(x-2)(x+3)}>0 \\
& \frac{5}{(x-2)(x+3)}>0 \\
& (x-2)(x+3)>0
\end{aligned}
$$

et $y=(x-2)(x+3)$
porabola opens up

$$
x-n: x=2, x=-3
$$

$$
y>0
$$

$$
x \in(-\infty,-3) \cup(2, \infty)
$$

so, $y \leq 0$ iff $(x \in[1,5])$
(4)

$$
\begin{aligned}
& f(x)=3 x-1 \\
& g(x)=\frac{3-x}{x+1}
\end{aligned}
$$

(a)

$$
\begin{aligned}
(g \circ f)(x) & =g(f(x)) \\
& =g(3 x-1) \\
& =\frac{3-(3 x-1)}{(3 x-1)+1}=\frac{3-3 x+1}{3 x-1+1}
\end{aligned}
$$

$(g \circ f)(x)=\frac{4-3 x}{3 x}$
(b) $(f \circ g)(2)=f(g(2))$

$$
g(2)=\frac{3-2}{2+1}=\frac{1}{3}
$$

∞,

$$
\begin{aligned}
(f \circ g)(2) & =f(g(2)) \\
& =f\left(\frac{1}{3}\right) \\
& =3\left(\frac{1}{3}\right)-1=0
\end{aligned}
$$

$(f \circ g)(z)=0$
(c) $f(x)=3 x-1$

1st $y=3 x-1$
and $3 x=y+1$ (fore for x)

$$
x=\frac{e^{4}+1}{3}
$$

3xd $y=\frac{x+1}{3} \quad(x \leftrightarrow y)$

$$
f^{-1}(x)=\frac{x+1}{3}
$$

(d) $g(x)=\frac{3-x}{x+1}$

1st $y=\frac{3-x}{x+1}$
and rolre the aq. fo x

$$
\begin{aligned}
& y(x+1)=3-x \\
& y x+y=3-x \\
& y x+x=3-y \\
& x(y+1)=3-y \Rightarrow x=\frac{3-y}{y+1}
\end{aligned}
$$

$$
3 r d \quad x<-y
$$

$$
\begin{aligned}
& g=\frac{3-x}{x+1} \\
& g^{-1}(x)=\frac{3-x}{x+1}
\end{aligned}
$$

(5) (a)

$$
\begin{aligned}
& =\ln x^{4}+\ln y^{7}-\ln z^{3} \\
& =\ln \left(x^{4} y^{7}\right)-\ln z^{3} \\
& =\ln \frac{x^{4} y^{7}}{z^{3}}
\end{aligned}
$$

$$
\text { (b) } \begin{aligned}
& \frac{1}{2}\left(\log _{5} x+\log _{5} y\right)-2 \log (x+1)= \\
= & \frac{1}{2} \log _{5} x y-\log _{5}(x+1)^{2} \\
= & \log _{5}(x y)^{\frac{1}{2}-\log _{5}(x+1)^{2}} \\
= & \log \frac{\sqrt{x y}}{(x+1)^{2}}
\end{aligned}
$$

(c) $\log _{3} 405-\log _{3} 5+\log 5+\log 2=$

$$
=\log _{3} \frac{405}{5}+\log (5.2)
$$

$$
=\log _{3} 81+\log 10=4+1=5
$$

$$
\begin{aligned}
& 2 x^{2}-x-6=0 \\
& x=\frac{-6 \pm \sqrt{b^{2}-4 a c}}{2 a} \\
& x=\frac{-(-1) \pm \sqrt{(-1)^{2}-4(2)(-6)}}{2(2)}
\end{aligned}
$$

(d) $\log _{4}\left(\log _{2} 16\right)=\log _{4} 4=\sqrt{1} \quad x=\frac{1 \pm \sqrt{1+48}}{4}=\frac{1 \pm 7}{4}$
$x_{1}=2, x_{2}=\frac{-6}{4}=\frac{-3}{2}$
(6) $y=-2 x^{2}+x+6$
$x-n:(2,0)$ and $\left(-\frac{3}{2}, 0\right)$
(a) porabola that opens

Lownward $(a=-z<0)$
(e) Domain: $x \in \mathbb{R}$
(b) let $x=0 \Rightarrow y=6$
(7) Rauge: $y \leq \frac{49}{8}$

$$
y-n:(0,6)
$$

(c) $V\left(x_{v}, y_{v}\right)$

$$
\begin{aligned}
& x_{v}=\frac{-b}{2 a}=\frac{-1}{2(-2)}=\frac{1}{4} \\
& y_{v}=-2 \cdot\left(\frac{1}{4}\right)^{2}+\frac{1}{4}+6 \\
& y_{v}=\frac{-1}{8}+\frac{1}{4}+6=\frac{1}{8}+6=6 \frac{1}{8} \\
& V\left(\frac{1}{4}, \frac{4 a}{8}\right)
\end{aligned}
$$

(g) iff $\left.\left\lvert\, x \in\left(-\infty, \frac{-3}{2}\right) \cup(2, \infty)\right.\right)$

$$
\begin{gathered}
\text { (h) } y=a\left(x-x_{v}\right)^{2}+y_{v} \\
V\left(\frac{1}{4}+\frac{4 a}{8}\right), a=-2 \\
y=-2\left(x-\frac{1}{4}\right)^{2}+\frac{49}{8}
\end{gathered}
$$

(d) $\operatorname{let} y=0$

$$
-2 x^{2}+x+6=0
$$

$$
2 x^{2}-x-6=0
$$

(t-) tu sraph on grapling poper (poge 7)
$-6-$
(7) $f(x)=2^{x}$
bomain: $x \in \mathbb{R}$

$$
\begin{array}{c|ccccccc}
x & -\infty & -2 & -1 & 0 & 1 & 2 & \infty \\
y=2^{x} & \begin{array}{l}
y \rightarrow 0 \\
A B . y=0 \\
4
\end{array} & \frac{1}{2} & 1 & 2 & 4 & \infty & \\
\hline
\end{array}
$$

See graph on grapling poper (joge 7)

$$
f^{-1}(x)=\left.\log _{2} x \frac{x}{y=\log _{2} x}\right|_{\text {Vmain: }} ^{f_{-\infty}-1} \begin{array}{rrrrrr}
0 & \frac{1}{2} & 1 & 2 & 4 & \infty \\
\text { V.A. } x=0
\end{array}
$$

(8) $N=1000 e^{0.69 t}$
(a)

$$
\begin{gathered}
t=0.5, N=? \\
N=1000 e^{0.69(0.5)}
\end{gathered}
$$

$N \approx 1412$ bacteria after $\frac{1}{2}$ hour.
(b) $t=$? when $N=1,000,000$

$$
\begin{aligned}
& \text { (b) } t=? \quad \text { ? lu } \\
& 1,000,000=1000 e^{0.69 t} \\
& e^{0.69 t}=1000 \quad t=\frac{\ln 1000}{0.69} \approx 10 \text { hours } \\
& \ln e^{0.09 t}=\ln 1000 \\
& 0.69 t=\ln 1000 \Rightarrow t h o t
\end{aligned}
$$

(c) $N_{0}=$ initial population $=1000 e^{\circ}=10006$ cteria $t=$? when $N=2 N_{0}=2000$ boctesin

$$
\begin{aligned}
& 2000=1000 e^{0.69 t} \\
& 2=e^{0.69 t} / \ln \\
& \ln \alpha=\ln e^{0.69 t} \\
& 0.69 t=\ln 2 \Rightarrow t=\frac{\ln 2}{0.69} \approx 1 \text { hour }
\end{aligned}
$$

De doubling time is I hover.
(6)

(9) $C=0.01 x^{2}-2 x+120$
$x=$ the umber of baskets produced
$C=$ cost for basket for purelucing x baste ts
The above equation refutents a port bola that spue up \because, there ore the миіміми occurs at the vertex

$$
\begin{aligned}
& V\left(x_{v}, C_{v}\right) \\
& x_{v}=\frac{-b}{2 a}=\frac{-(-2)}{2(0.01)}=\frac{1}{0.01}=100 \text { baskets } \\
& \begin{aligned}
C_{v} & =0.01(100)^{2}-2(100)+120 \\
& =1(100)-200+120 \\
& =20 \mathrm{~F} / \text { basket }
\end{aligned}
\end{aligned}
$$

They stoned furduce 100 format wi older to miniunye tar sort par basket
Total cost at that puraluctim level (100taskib) will fe 100 basket. (20 中/basket)

$$
=2000 \ngtr
$$

