Review Test 1 Chapters 1 & 2 and Appendix L

To prepare for the test, learn all definitions, be familiar with all theorems and postulates and study the following problems. Know how to translate a statement, problem or theorem into hypothesis (what's given), conclusion (what needs to be proved) and an appropriate drawing to illustrate the given situation.

Logic (Appendix L & 1.4)

Handout Introduction	I	Exercises # 2, 6, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24 Symbolic forms and proofs of DeMorgan's Laws, Law of Detachment, Law of Negative Inference, Law of Syllogism.
Handout Section 1.4		Exercise #3
Homework #1	Appendix L3: Appendix L4: Appendix L5:	Exercises # 47, 50, 62, 64, 68 Exercises # 2, 6, 61 Exercises # 3, 5, 6, 35, 37, 39 Exercises # 2, 5, 6, 7, 9, 10, 12 Exercises # 24 – 28

Chapter 1

Important terms and concepts:

- point, line, plane
- properties of equality
- collinear points
- coplanar points
- line segment
- length of a line segment
- ray
- opposite rays

- angle
- types of angles
- pairs of angles (vertical, complementary, supplementary, adjacent)
- midpoint of a segment
- bisector of a segment
- perpendicular lines
- distance from a point to a line
- angle bisector

Homework #2	Section 1.2:	Exercises # 13, 15, 17, 24	
	Section 1.3:	Exercises # $1 - 20$, 67	
	Section 1.5:	Exercises # 1, 3, 4, 5, 6, 9, 10,	
	Section 1.6:	Exercises # 25, 26	

Handout Sections 1.2 & 1.3 Exercises # 4, 5 (write all steps down), 7, 8, 11, 12

Important Postulates

- (see handout sections 1.2, 1.3)
- 1) Two points determine a line.
- 2) Three noncollinear points determine a plane.
- 3) Given two points in a plane, the line containing these points also lies in the plane.
- 4) Segment Addition Postulate
- 5) Angle Addition Postulate

(see section 1.6)

- 6) Each line segment has exactly one midpoint.
- 7) Each angle has exactly one bisector.
- 8) Each line segment has exactly one perpendicular bisector.
- 9) There is exactly one line perpendicular to a given line passing through a given point on the line.
- 10) There is exactly one line perpendicular to a given line passing through a given point not on the line.

Important theorems

Know the formal proofs of the theorems marked with an asterisk *.

1) The Addition / Subtraction Theorem for segments: The sum or difference of congruent segments yields congruent segments (1.5 - T 1, T2)

2) The Addition/Subtraction Theorem for angles: The sum or difference of congruent angles yields congruent angles (1.5 - T3, 4)

- * 3) Two equal supplementary angles are right angles (1.5 T1.5)
- * 4) Complements of equal angles are equal (1.5 T1.6)
- * 5) Supplements of equal angles are equal (1.5 T 1.5)
- * 6) Vertical angles are equal in measure (1.5 1.11)
 - 7) All right angles are equal in measure (1.6 T1.12)

8) Two lines are perpendicular if and only if they meet to form right angles – in class

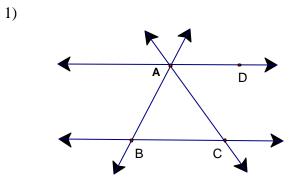
- isosceles triangles

Chapter 2

Important terms and concepts: - Triangle

- types of tr	- types of triangles			
- perimeter	- median			
- interior an	gle of a triangle	e - altitude		
- exterior an	ngle of a triangl	le - perpendicular bisector		
- congruent	triangles	- bisector of an angle		
Homework #3	Section 2.1:	Exercises # 1 - 10		
	Section 2.2:	Exercises # 4, 5, 6, 9, 10, 11, 14, 16		
	Section 2.3	Exercises # 1 – 4, 6, 9, 12, 13, 23		
	Section 2.4:	Exercises # 8, 11, 14 – 19		
Homework #4	Section 2.5:	Exercises # 3, 18, 19, 20		
Handout Section 2.4	Exercises # 3, 4, 5			

Know when two triangles are congruent: SAS, ASA, SSS, AAS (section 2.2 and in class) and the special cases for right triangles LA and LL (section 2.5).


Know the following constructions (including proof):

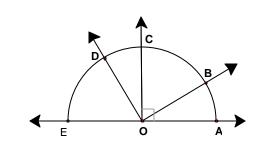
- 1) Construct the midpoint of a given segment. (2.3 T2 see also construction 1.3 in the book)
- 2) Construct the bisector of a given angle (2.3 T4 see construction 1.6 in the book) in class

Know the formal proof of the following theorem:

1) Two sides of a triangle are congruent if and only if the opposite angles are congruent. (2.4 - T2.5, T2.7) - in class

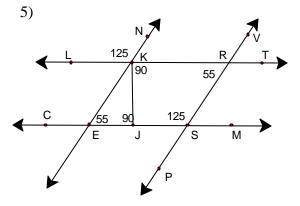
Do you know the definitions and theorems we have studied in Chapters 1 and 2? Have you understood the definitions and theorems rather than memorizing them?

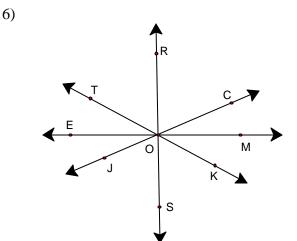
Use the figure to name the geometric figures requested:


- a) four lines
- b) four line segments
- c) eight rays
- d) two segments whose intersection is empty.

2) Answer true or false:

a) EJ represents the length of EJ.
b) If EJ = JS, then EJ ≅ JS.
c) If AB ≅ CD, then AB = CD.
d) If EJ > JS, then EJ ≅ JS.
e) If TJ ≅ KR, then TJ could be less than KR.
f) Given any AB and any LM, there exists a unique point P on LM such that LP ≅ AB.





4)

7)

т

А

S

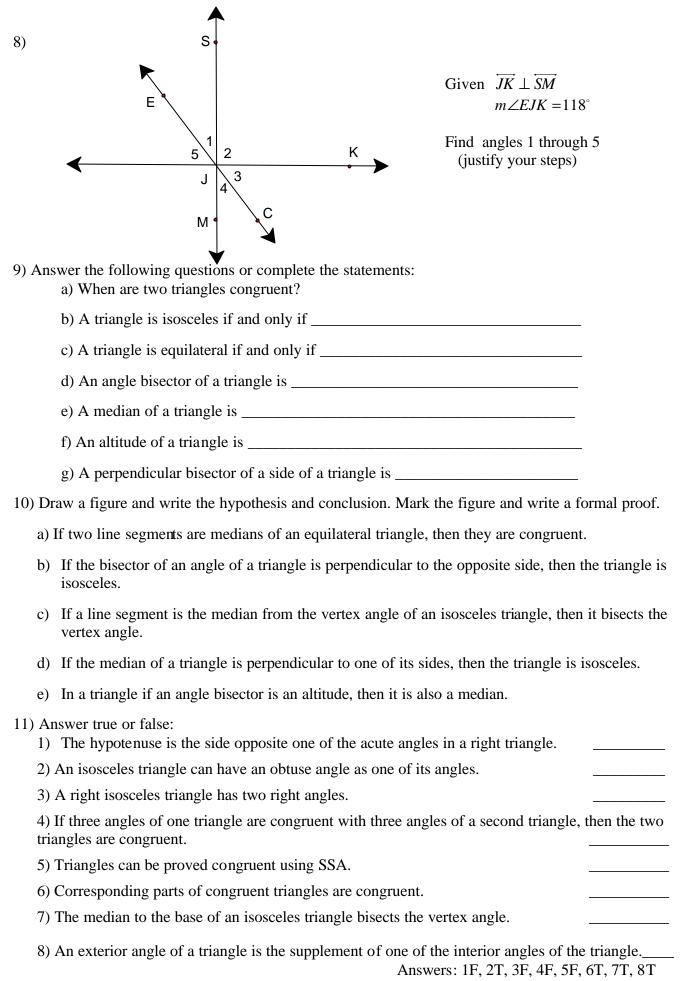
Н

Given the figure, name:

4

- a) three acute angles
- b) Two right angles
- c) One obtuse angle
- d) One straight angle
- e) Two complementary angles
- f) Two supplementary angles
- g) Two adjacent angles
- h) Two nonadjacent angles
- i) Two opposite rays
- j) Three noncollinear points.

Given the figure as marked, answer True or False:


- a) $\angle EJK$ is a right angle.
- b) $\angle LKN$ and $\angle PSM$ are vertical angles.
- c) $\angle LKN$ is supplementary to $\angle NKR$.
- d) $\angle JSR$ is complementary to $\angle RSM$.
- e) $\angle LKE \cong \angle KRS$
- f) $\angle EKJ$ is complementary to $\angle KEJ$
- g) $\angle EKJ$ is adjacent to $\angle JKR$.

Use the figure to answer true or false. Given $\overrightarrow{RS} \perp \overrightarrow{EM}$ $m \angle TOE = m \angle JOE = 30^{\circ}$

- a) $\angle MOS$ is a right angle
- b) $\angle JOE \cong \angle MOC$
- c) $\angle EOR = \angle EOT + \angle TOR$
- d) $\angle ROC$ and $\angle KOS$ are vertical angles.

Use the figure to answer

- a) Name four acute triangles
- b) Name four obtuse triangles.
- c) Name one right triangle.
- d) Name one isosceles triangles.
- e) Name one equilateral triangle.

