TEST \#2 @ 150 points

Solve the problems on separate paper. Clearly label the problems. Show all steps in order to get credit. No proof, no credit given

1. Graph the function $y=\cos x$. Show the graph over two periods. Answer the following questions:
a) What is the domain?
b) What is the range?
c) What is the period?
d) What is the amplitude?
e) What are the x-intercepts?
f) What is the y-intercept?
g) Is the function even or odd? How is that shown in the graph?
2. Graph $y=2 \sin \left(x-\frac{\pi}{3}\right)$ over one period. Identify the amplitude , period, and phase shift and label the axes accurately. Explain in words what and how you are graphing.
3. Graph $f(x)=\sin x$ and $f^{-1}(x)=\sin ^{-1}(x)$ on the same coordinate system, showing the relation between the two graphs (symmetry about the line $y=x$). Answer the following questions:
a) What is the domain and range of $f(x)=\sin x$?
b) What is the domain and range of $f^{-1}(x)=\sin ^{-1}(x)$?
4. Evaluate the following. Give exact answers whenever possible.
a) $\sin ^{-1}\left(\frac{1}{2}\right)$
b) $\cos ^{-1}\left(-\frac{\sqrt{3}}{2}\right)$
c) $\tan ^{-1}(-1)$
d) $\cos \left(\sin ^{-1} \frac{3}{5}\right)$
e) $\sin ^{-1}\left(\sin \frac{5 \pi}{8}\right)$
f) $\cos ^{-1}\left(\cos \frac{2 \pi}{7}\right)$
g) $\tan \left(\tan ^{-1} 100.23\right)$
h) $\cos 15^{\circ}$
5. Prove the following identities:
a) $\frac{\sin x+1}{\cos x+\cot x}=\tan x$
b) $\frac{\cos t}{1+\sin t}=\frac{1-\sin t}{\cos t}$
c) $\tan (a+b)=\frac{\tan a+\tan b}{1-\tan a \tan b}$
6. Solve the following equations.

When appropriate, show EXACT answers.
ONLY when NO exact answer is possible, express solutions rounded to two decimal places.
a) Find ALL solutions: $2 \sin x-1=0$
b) Solve on $[0,2 \pi): \quad \sin (2 x)=1$
c) Solve on $\left[0^{\circ}, 360\right): 2 \tan \theta+2=0$
d) Solve on $[0,2 \pi): \quad \cos \theta=-0.8$
e) Solve on $[0,2 \pi)$: $\quad 2 \sin ^{2} x-\sin x-1=0$
f) Find ALL solutions: $\sin 2 \theta-\cos \theta=0$
g) Solve on $[0,2 \pi): \quad 2 \sin ^{2} \theta-2 \cos \theta-1=0$
(1) $y=\cos x$

b) Rauge: $y \in[-1,1]$
c) Perid: $T=2 \pi$
d) Ampliterde: $A=1$
e) $x-n:\left(\pm \frac{\pi}{2}, 0\right),\left(\pm \frac{3 \pi}{2}, 0\right),\left(\pm \frac{5 \pi}{2}, 0\right)$, etc or
$\left((2 k+1) \frac{\pi}{2}, 0\right)$ wher $A \in \mathbb{Z}$
f) $y-n:(0,1)$
g) $y=\cos x$ is an enen fuectire
thogople is rymuetric rbout the y-axis
(2)

$$
\begin{aligned}
& y=2 \sin \left(x-\frac{\pi}{3}\right) \\
& \text { aupeitude }=2 \\
& \text { ferird } T=2 \pi \\
& \text { phoosluift }=\frac{\pi}{3}
\end{aligned}
$$

Take $\left[\frac{\pi}{3} ; \frac{\pi}{3}+2 \pi\right]$
dindert cuito 4 ogual

$$
\begin{aligned}
& \frac{\pi}{3} \\
& 2, \frac{3}{3}+\frac{\pi}{2}=\frac{5 \pi}{6} \\
& \frac{5 \pi}{6}+\frac{3 \pi}{2}=\frac{9 \pi}{6}=\frac{4 \pi}{3} \\
& \frac{5 \pi}{6}+\frac{\pi}{2}=\frac{11 \pi}{6} \\
& \frac{1 \pi}{6}+\frac{3}{2}=\frac{1 \pi}{6}=\frac{\pi \pi}{3}
\end{aligned}
$$

(3)

$$
\begin{array}{ll}
f(x)=\sin x & f ;\left[-\frac{\pi}{2}, \frac{5}{2}\right] \rightarrow[-11] \\
f^{-1}(x)=\sin ^{-1} x & f^{\prime}:[-1,1] \rightarrow\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]
\end{array}
$$

(4) NOTE BAT:

$$
\begin{cases}\sin ^{-1}:[-1,1] & \rightarrow\left[-\frac{\pi}{2}, \frac{5}{2}\right] \\ \cos ^{-1}:[-1,] & \rightarrow\left[0, \frac{1}{]}\right] \\ \tan ^{-1}: R \rightarrow & \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)\end{cases}
$$

	$\pi / 6$	$\pi / 3$	$\pi / 4$
\sin	$\frac{1}{2}$	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$
\cos	$\frac{6}{2}$	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$

(a) $\sin ^{-1}\left(\frac{1}{2}\right)=\frac{\frac{\pi}{6}}{6} / c:\left\{\begin{array}{l}\frac{\pi}{6} \in\left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \\ \sin \frac{\pi}{6}=\frac{1}{2}\end{array}\right.$

(3) $\left.\cos ^{-1}\left(-\frac{\sqrt{3}}{2}\right)=\frac{5 \pi}{6}\right) 4 / C\left\{\begin{array}{l}\frac{5 \pi}{6} \in[0.17 \\ \text { ond } \\ \cos \frac{5 \pi}{6}=\frac{-\sqrt{3}}{2}\end{array}\right.$
(c) $\tan ^{-1}(-1)\left(-\frac{\pi}{4}\right) \& / C\left\{\begin{array}{l}\frac{-\pi}{4} \in\left(\frac{-5}{2}, \frac{\pi}{2}\right) \\ \operatorname{san} d \\ \tan \left(\frac{-\pi}{4}\right)=-1\end{array}\right.$

(d) $\cos \left(\sin ^{-1} \frac{3}{5}\right)=$?
at $\sin ^{-1} \frac{3}{5}=u \in\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$
then $\sin u=\frac{3}{5}$

$$
\left.\left.\begin{array}{rl}
\sin ^{2} u+\cos ^{2} u=1 \\
\left(\frac{3}{5}\right)^{2}+\cos ^{2} u=1 \Rightarrow & \cos ^{2} u=1-\frac{9}{25}=\frac{16}{25} \\
& \cos u= \pm \frac{4}{5} \\
& 64+u \in\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]
\end{array}\right\} \Rightarrow \cos u=\frac{4}{5}\right]
$$

Therefoe, $\cos u=\cos \left(\sin ^{-1} \frac{3}{5}\right)=\frac{4}{5}$
(e) $\sin ^{-1}\left(\sin \frac{5 \pi}{8}\right) \neq \frac{5 \pi}{8}$ b/c $\frac{5 \pi}{8} \notin\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$

$$
\sin \frac{5 \pi}{8}=\sin \frac{3 \pi}{8}, \frac{3 \pi}{8} \in\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]
$$

Thotper,

$$
\sin ^{-1}\left(\sin ^{\frac{5 \pi}{8}}\right)=\sin ^{-1}\left(\sin \frac{3 \pi}{8}\right)=\frac{3 \pi}{8}
$$

(f) $\left.\cos ^{-1}\left(\cos \frac{2 \pi}{7}\right) \neq \frac{2 \pi}{7}\right)$ b/c $\frac{2 \pi}{7} \in\left[0, \frac{\pi}{1}\right]$
(g) $\tan \left(\tan ^{-1} 100.23\right)=100.23$ b/C $100.23 \in \mathbb{R}$
(h) $\cos 15^{\circ}=$?

Methat I using $\cos (a-b)=\cos \cos b+\sin a \sin$

$$
\begin{aligned}
\cos / 5^{\circ} & =\cos \left(45^{\circ}-30^{\circ}\right) \\
& =\cos 45^{\circ} \cos 30^{\circ}+\sin 45^{\circ} \sin 30^{\circ} \\
& =\frac{\sqrt{2}}{2} \frac{\sqrt{3}}{2}+\frac{\sqrt{2}}{2} \cdot \frac{1}{2} \\
& =\frac{\sqrt{6}+\sqrt{2}}{4}
\end{aligned}
$$

Flethod II) using $\cos 2 a=2 \cos ^{2} a-1$

$$
\begin{aligned}
& \cos 2 a=\frac{2 \cos ^{2} a-1}{\cos ^{2} a}=\frac{1+\cos 2 a}{2} \Rightarrow \cos a= \pm \sqrt{\frac{1+\cos 2 a}{2}}
\end{aligned}
$$

$$
\begin{aligned}
& \cos 15^{\circ}=\sqrt{\frac{1+\cos 2\left(15^{\circ}\right.}{2}} \quad 15^{\circ} \in T T^{2} \text { there, } \\
& \cos 15^{\circ}=\sqrt{\frac{1+\cos 30^{\circ}}{2}}=\sqrt{\frac{1+\frac{\pi}{2}}{2}}=\frac{\sqrt{2+\sqrt{3}}}{2}
\end{aligned}
$$

$\begin{aligned} & \text { Note that } \frac{\sqrt{6}+\sqrt{2}}{4}=\frac{\sqrt{2+\sqrt{3}}}{2} \Leftrightarrow(\sqrt{6}+\sqrt{2})^{2}=4(2+\sqrt{3}) \\ &(\text { metand })(\text { method II })\end{aligned} \Leftrightarrow 6+2+2 \sqrt{12}=8+4 \sqrt{3}$

$$
\Leftrightarrow 8+4 \sqrt{3}=8+4 \sqrt{3}
$$

$-4=$
(5) (a) $\frac{\sin x+1}{\cos x+\cot x}=\tan x$ (b) $\frac{\cos t}{1+\sin t}=\frac{1-\sin t}{\cos t}$

Proof

$$
\begin{aligned}
& \text { LHS }=\frac{\sin x+1}{\cos x+\cot x} \\
& =\frac{\sin x+1}{\cos x+\frac{\cos x}{\sin x}} \\
& \frac{\cos t}{1+\sin t}=\frac{1-\sin t}{\cos t} \\
& \begin{array}{l}
=\frac{\sin x+1}{\cos x+\frac{\cos x}{\sin x}} \\
=\frac{\sin x(\sin x+1)}{\cos x(\sin x+1)}
\end{array} \\
& \begin{aligned}
& \Leftrightarrow \\
\cos ^{2} t & \Leftrightarrow(-\sin t)(1+\sin t) \\
& \Leftrightarrow
\end{aligned} \\
& \begin{aligned}
& \cos ^{2} t \Leftrightarrow(-\sin t)(1+\phi n t) \\
& \Leftrightarrow
\end{aligned} \\
& =\frac{\sin x}{\cos x} \\
& \cos ^{2} t=1-\sin ^{2} t \\
& =\tan x=\text { RHS } \\
& \text { Prosf } \\
& \cos ^{2} t=\cos ^{2} t \text { tree } \\
& \text { Duespoe, } \frac{\cos t}{1+\sin t}=\frac{1-\sin t}{\cos t}
\end{aligned}
$$

(c) $\tan (a+b)=\frac{\tan a+\tan b}{1-\tan a \tan b}$

Proen

$$
\begin{aligned}
& L H S=\tan (a+b)= \frac{\sin (a+b)}{\cos (a+b)} \\
&= \frac{\sin a \cos b+\sin b \cos a}{\cos a \cos b-\sin a \sin b} \\
& \frac{\sin a \cos b}{\cos a \cos b}+\frac{\sin b \cos a}{\cos a \cos b} \\
&= \frac{\cos a \cos b}{\cos a \cos }-\frac{\sin a \operatorname{cin} b}{\cos a \operatorname{c} s} \\
&= \tan a+\tan b \\
& 1-\tan a \tan b
\end{aligned}=R H S
$$

(6) (a) $2 \sin x-1=0$

$$
\sin x=\frac{1}{2}
$$

Note: $T=2 \pi$

	$\frac{5}{6}$	$\frac{5}{3}$	$\frac{5}{4}$
\sin	$1 / 2$	$\sqrt{1 / 2}$	$\sqrt{2 / 2}$
\cos	$\sqrt{3 / 2}$	$1 / 2$	$\sqrt{2} / 2$
\tan	$\frac{\sqrt{3}}{3}$	$\sqrt{3}$	1

$$
\left\{\begin{array}{l}
x=\frac{\pi}{6}+2 k- \\
x=\frac{5 \pi}{6}+2 k \pi
\end{array}\right.
$$

(b) $\sin 2 x=1$

$$
\begin{aligned}
& \text { Note: } 厂=2 \pi \\
& 2 x=\frac{\pi}{2}+2 k- \\
& x=\frac{\pi}{4}+K T, k \in \mathbb{Z} \\
& \text { if } k=0 \Rightarrow x=\frac{\pi}{4} \\
& K=1 \Rightarrow x=\frac{5}{4}+\pi=\frac{5 \pi}{4}
\end{aligned}
$$

folutin at $\left\{\frac{\pi}{4}, \frac{5 \pi}{4}\right\}$
(c) $2 \tan \theta+2=0$
$\tan \theta=-1$
Acote: $T=180^{\circ}$

$$
\begin{aligned}
\theta & =135^{\circ}+180^{\circ} K, k \in \mathbb{Z} \\
\text { f } K=0 \Rightarrow \theta & =135^{\circ} \\
\text { if } K=1 \Rightarrow \theta & =135^{\circ}+180^{\circ} \quad \text { folutinat }\left\{135^{\circ}, 315^{\circ}\right\} \\
& =315^{\circ}
\end{aligned}
$$

(d) $\cos \theta=-0.8$

$$
\begin{aligned}
& \theta_{1}=\cos ^{-1}(-0.8) \in[0, \pi) \\
& \theta_{1} \approx 2.50 .
\end{aligned}
$$

The, $\theta_{2}=2 \overline{2}-\theta_{1}$

$$
\begin{aligned}
2 & =2 \pi-\theta_{1} \\
& =2 \overline{\cos }(-0.8) \quad \theta_{2}
\end{aligned}
$$

Solutin xt

$$
\{2.50,3.79\}
$$

$$
\begin{aligned}
& \text { (e) } \begin{aligned}
2 \sin ^{2} x-\sin x-1 & =0 \\
\sin x & =\frac{1 \pm \sqrt{1+8}}{4} \\
& =\frac{1 \pm 3}{4}
\end{aligned}
\end{aligned}
$$

$\sin x=1$ or $\tan x=\frac{1}{2}$

$$
x=\frac{\pi}{2}
$$

$$
x=\frac{\pi}{6} \text { on }
$$

Solutin x :

$$
x=\frac{\pi i 1}{6}
$$

$$
\left\{\frac{\pi}{2}, \frac{71}{6}, \frac{11 \pi}{6}\right\}
$$

(7) $\sin 2 \theta-\cos \theta=0$

$$
2 \sin \theta \cos \theta-\cos \theta=0
$$

$$
\cos \theta(2 \sin \theta-1)=0
$$

$\cos \theta=0 \quad O R \quad \sin \theta=\frac{1}{2}$

$$
\left\{\begin{array} { l }
{ \theta = \frac { \pi } { 2 } + 2 k } \\
{ 0 R } \\
{ \theta = \frac { 3 \pi } { 2 } + 2 K \pi } \\
{ k \in \mathbb { Z } }
\end{array} \left\{\begin{array}{c}
\theta=\frac{\pi}{6}+2 k \pi \\
0 R \\
\theta=\frac{5 \pi}{6}+2 k \pi \\
k \in \mathbb{Z}
\end{array}\right.\right.
$$

