TEST #1 @ 150 points

Solve the problems on separate paper. Clearly label the problems. Show all steps in order to get credit. No proof, no credit given

1. Find $\sin a$, $\cos b$, $\tan a$, $\cot b$ if

2. Let *t* a real number and $P\left(\frac{2\sqrt{2}}{3}, \frac{-1}{3}\right)$ a point on the unit circle that corresponds to *t*. Find the exact values of the six trigonometric functions of *t*.

3. Find **q** if
$$0^{\circ} < \mathbf{q} < 360^{\circ}$$
 and $\sin \mathbf{q} = \frac{\sqrt{3}}{2}$ with **q** in quadrant II.

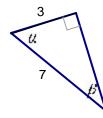
4. Find the exact values of the following:

a)
$$\sin 45^\circ + \cos(-30^\circ)$$
 b) $\sin(240^\circ)$ c) $\tan \frac{p}{3} + \cos \frac{p}{3}$ d) $\cos(495^\circ)$
e) $\sin\left(-\frac{3p}{4}\right)$ f) $\tan\left(\frac{13p}{6}\right)$ g) $\cos\left(\frac{5p}{6}\right)$

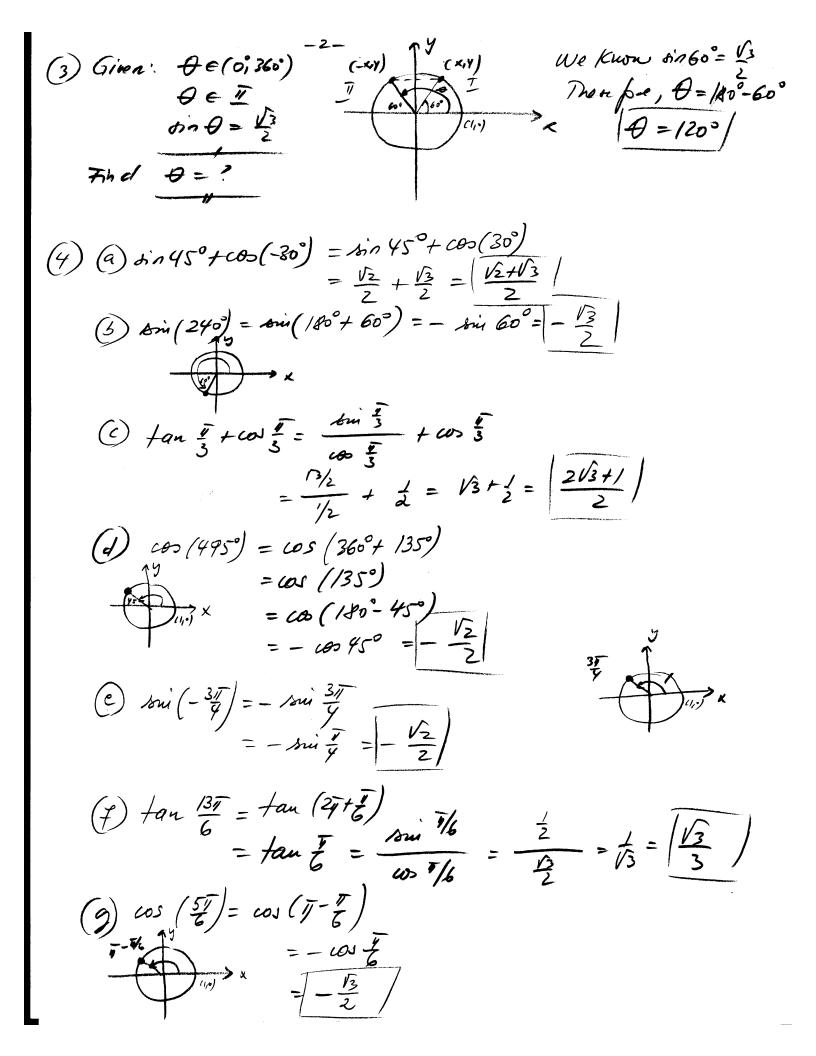
5. Use the unit circle to find all the values of q between 0 and 2p for which

a)
$$\sin q = \frac{1}{2}$$
 b) $\cos q = -\frac{\sqrt{2}}{2}$

6. Prove the following trigonometric identities:


a)
$$\csc \boldsymbol{q} + \sin(-\boldsymbol{q}) = \frac{\cos^2 \boldsymbol{q}}{\sin \boldsymbol{q}}$$
 b) $\frac{\cos a}{1 + \sin a} + \frac{1 + \sin a}{\cos a} = 2\sec a$

7. Show that tangent is an odd function.


8. A mixing blade on a food processor extends out 3 inches from its center. If the blade is turning at 600 revolutions per minute, what is the linear velocity of the tip of the blade in feet per minute?

9. A lawn sprinkler is located at the corner of a yard. The sprinkler is set to rotate through 90° and project water out 60 feet. What is the area of the yard watered by the sprinkler?

10. From a point on the ground 500 feet from the base of a building, it is observed that the angle of elevation to the top of the building is 24° and the angle of elevation to the top of a flagpole atop the building is 27° . Find the height of the building and the length of the flagpole.

.

(5)
$$\theta \in (0,27)$$

(a) $Sni \theta = \frac{1}{2}$
 $Ne know $in \overline{g} = \frac{1}{2}$
 $Ne know $in \overline{g} = \frac{1}{2}$
 $1 \theta \in \frac{1}{8} [\frac{5}{6}]^{\frac{1}{6}}$
(b) $cbo \theta = -\frac{V_2}{2}$
 $Ne know cal \overline{g} = \frac{1}{2}$
 $Ne know cal \overline{g} = \frac$$$

.

= <u>1+1+2 dina</u> = <u>2(1+1)</u> (a) a (1+ 5 a a) = (2) a (1+ 10 min) $=\frac{2}{100}=2410$ Numpre, ana + 1+dina - ZDeca D Need to show that tan (-+) = - tan O for Provb OFR -for (-0) = - (-0) = - suit as A Neufre, tan is an odd function (2) Given: r= 3in rate = 600 rev/min Find V=? (ft/min) fluti m V= 2007 Tod . 3in $V = W \Gamma$ = 120011 nod. 3in. 14 $W = 600 \frac{\sigma c v}{min} =$ =600. 27 rod V 2 942. 5 / / min V = 3001 H = 1200 TT 00

5-Given: V=Ceoft Find: Area =? Solution A = & Acircle $A = \frac{1}{4} \cdot \overline{\eta} r^2 = \frac{1}{4} \cdot \overline{\eta} \cdot (60)^2$ A=9001 H2 A = 2827.4 H2 Let h= height building x= lusta flagpole ь $\triangle ABC: fau 24° = \frac{h}{500}$ h= 500 tau 24° ≈ 223 (# h $\triangle ABO: fau 27° = \frac{h+X}{600}$ h+x= 500 tau 27° 2 255 ft X = 255 -223 x= 32 ft