REVIEW TEST \#1

Chapters 1, 2, and

Review the following homework problems:
Chapter 1 - The Six Trigonometric Functions

```
Section \(1.1 \quad 10,14,27,33,37,39,44,46,47,53,55\)
Section 1.2 80, 81
Section 1.3 29, 31, 33, 35, 43, 45, 49, 53, 59, 61, 63, 65, 67, 71
Section \(1.4 \quad 27,31,35,39,43,47,49,51,53,55\)
Section \(1.5 \quad 21,25,27,31,35,39,43,49,57,71,75,79,83,85,89,91\)
```

Chapter 2 - Right Triangle Trigonometry

Handout	All problems
Section 2.1	$27-51$ odd
Section 2.2	$15,19,23,27$

Chapter 3 - Radian Measure
$\begin{array}{ll}\text { Section } 3.1 & 13,17,21,25,67,69,71,73,75,77,79 \\ \text { Section } 3.2 & 9,51-63 \text { odd, } 77,77,81 \\ \text { Section } 3.3 & 1,3,9,11,13,15,17,19,21,39,41,42,45,47,49,51,52,53,54,55,57,59 \\ \text { Section 3.4 } & 11,13,15,21,33,43,53,54 \\ \text { Section 3.5 } & 5,12,20,21,28,43,49,53,55\end{array}$
(1.) Find $\sin \frac{11 \pi}{2}, \cos 7 \pi, \tan 6 \pi$
(Answers: $-1,-1,0$)
(2.) Find the exact values of
a) $\sin 45^{\circ}+\cos 60^{\circ}$
b) $\sin 30^{\circ}-\cos 45^{\circ}$
c) $\tan \frac{\pi}{3}+\cos \frac{\pi}{3}$
(3.) Find al the other trigonometric fenctine of θ

(4) Simplify:
$\frac{\sin \left(-20^{\circ}\right)}{\cos 380^{\circ}}+\tan 200^{\circ}$

$$
\left.\begin{array}{l}
\sin \theta=\frac{\sqrt{10}}{10} \\
\cos \theta=-\frac{3 \sqrt{10}}{10}
\end{array}\right)
$$

rite tan witenus of cost
(5) Write ant uterus of cost
(6) If $f(0)=\cos \theta$ and $f(a)=\frac{1}{4}$, find:
a) $f(-a)$
a) $\frac{1}{4}$
b) $\quad f(a)+f(a+2 \pi)+f(a-2 \pi)$
(7.) Prove the following identities i
a) $\tan \theta \cot \theta-\cos ^{2} \theta=\sin ^{2} \theta$
b) $9 \sec ^{2} \theta-5 \tan ^{2} \theta=5+4 \sec ^{2} \theta$
c) $\frac{\cos \theta}{1+\sin \theta}+\frac{1+\sin \theta}{\cos \theta}=2 \sec \theta$
d) $\frac{\sec \theta}{1-\sin \theta}=\frac{1+\sin \theta}{\cos ^{3} \theta}$
e) $\frac{\cos \theta+\sin \theta-\sin ^{3} \theta}{\sin \theta}=\cot \theta+\cos ^{2} \theta$
f) $\tan \alpha \tan \beta=\frac{\tan \alpha+\tan \beta}{\cot \alpha+\cot \beta}$

