TEST 4 @ 120 points

Show your work for credit. Write all responses on separate paper. Please write only on one side and clearly label the exercises.

1) $3 x^{2}+3 y^{2}+5 x-4 y=1$
a) What type of curve is this? Circle
b) What is the standard form of this equation? Show all work. $\left(x+\frac{5}{6}\right)^{2}+\left(y-\frac{2}{3}\right)^{2}=\frac{53}{36}$
c) Center? $\left(-\frac{5}{6}, \frac{2}{3}\right)$ d) Radius? $r=\frac{\sqrt{53}}{6} \approx 1.21$
e) Find the x - and y-intercepts (if any). Do not approximate. Give exact answers. Show all work

$$
\begin{aligned}
& x \text {-intercepts }\left(-\frac{5}{6} \pm \frac{\sqrt{37}}{6}, 0\right) \quad y \text {-intercepts }\left(0, \frac{2}{3} \pm \frac{\sqrt{7}}{3}\right) \\
& 3 x^{2}+3 y^{2}+5 x-4 y=1
\end{aligned}
$$

To find the coordinates of the center and the radius, we need to write the equation in standard form. For that, we need to complete the square on x and y.
Step 1: coefficient of x^{2} and y^{2} be 1 - divide both sides of the equation by 3 .

$$
x^{2}+\frac{5}{3} x+y^{2}-\frac{4}{3} y=\frac{1}{3}
$$

Step 2: complete the square on x by adding $\left(\frac{1}{2} \operatorname{coefficient~of~} x\right)^{2}$ and complete the square on y by adding $\left(\frac{1}{2} \text { coefficient of } y\right)^{2}$ to both sides of the equation.

$$
\begin{aligned}
& x^{2}+\frac{5}{3} x+\frac{25}{36}+y^{2}-\frac{4}{3} y+\frac{4}{9}=\frac{1}{3}+\frac{25}{36}+\frac{4}{9} \\
& \left(x+\frac{5}{6}\right)^{2}+\left(y-\frac{2}{3}\right)^{2}=\frac{53}{36} \text { - the standard equation of the circle. }
\end{aligned}
$$

To find the y-intercepts, make $x=0$ in the given equation (then use the quadratic formula to solve for y) or in the standard form (and use the square root property to solve the equation for y).
$\left(0+\frac{5}{6}\right)^{2}+\left(y-\frac{2}{3}\right)^{2}=\frac{53}{36}$
$\frac{25}{36}+\left(y-\frac{2}{3}\right)^{2}=\frac{53}{36}$
$\left(y-\frac{2}{3}\right)^{2}=\frac{28}{36}$
$y-\frac{2}{3}= \pm \frac{\sqrt{28}}{6}$, so $y_{1,2}=\frac{2}{3} \pm \frac{\sqrt{7}}{3}$

To find the x-intercepts make $y=0$ in the given equation (then use the quadratic formula to solve for x) or in the standard form (and use the square root property to so solve for x .

$$
\begin{aligned}
& 3 x^{2}+3 y^{2}+5 x-4 y=1 \\
& 3 x^{2}+5 x-1=0 \\
& x_{1,2}=\frac{-5 \pm \sqrt{5^{2}-4(3)(-1)}}{2 \cdot 3} \\
& x_{1,2}=\frac{-5 \pm \sqrt{37}}{6}
\end{aligned}
$$

2) $\quad\left\{\begin{array}{l}x^{2}-4 y^{2}=-7 \\ 3 x^{2}+y^{2}=31\end{array}\right.$
a) Solve the above system graphically; that is, graph each equation and identify the common points of the two graphs.
$x^{2}-4 y^{2}=-7$
$\frac{x^{2}}{-7}-\frac{4 y^{2}}{-7}=1$
$\frac{4 y^{2}}{7}-\frac{x^{2}}{7}=1$
$\frac{y^{2}}{\frac{7}{4}}-\frac{x^{2}}{7}=1$ - hyperbola with a vertical transverse
To graph the hyperbola:

- plot on the x-axis $\pm \sqrt{7}$;
- plot on the y -axis $\pm \frac{\sqrt{7}}{2}$
- draw the box and the asyptotes
- using the vertices $\left(0, \pm \frac{\sqrt{7}}{2}\right)$, sketch the hyperbola

b) Solve the above system algebraically; that is, find the exact coordinates of the common points.

$$
\left\{\begin{array}{l}
x^{2}-4 y^{2}=-7 \\
3 x^{2}+y^{2}=31
\end{array}\right.
$$

If we multiply the first equation by -3 and add it to the second equation we obtain:

$$
\begin{aligned}
& 13 y^{2}=52 \\
& y^{2}=4 ; y= \pm 2
\end{aligned}
$$

If we substitute y into the second equation we obtain:

$$
\begin{aligned}
& 3 x^{2}=27 \\
& x^{2}=9 ; x= \pm 3
\end{aligned}
$$

Therefore, the solutions of the system are: $(3,2),(3,-2),(-3,2)$, and $(-3,-2)$.
3)
a) Find the sum:

$$
\sum_{i=1}^{3} \frac{(i+2)!}{i!}=\sum_{i=1}^{3} \frac{(i)!(i+1)(i+2)}{i!}=\sum_{i=1}^{3}(i+1)(i+2)=2 \cdot 3+3 \cdot 4+4 \cdot 5=6+12+20=38
$$

b) Find the sum: $\quad \sum_{k=3}^{7}\binom{7}{k}=\binom{7}{3}+\binom{7}{4}+\binom{7}{5}+\binom{7}{6}+\binom{7}{7}=\frac{7 \cdot \not 6 \cdot 5}{1 \cdot 2 \cdot 3}+35+\frac{7 \cdot 6}{1 \cdot 2}+7+1=99$

$$
\text { Note: }\binom{7}{4}=\binom{7}{3},\binom{7}{5}=\binom{7}{2},\binom{7}{6}=\binom{7}{1}
$$

b) Express the sum using summation notation:

$$
4+\frac{4^{2}}{2}+\frac{4^{3}}{3}+\ldots+\frac{4^{n}}{n}=\sum_{i=1}^{n} \frac{4^{i}}{i}
$$

c) Find a general term for the sequence:

$$
\begin{array}{ll}
a_{1}=\frac{3}{2} & \frac{3}{2}, \frac{4}{3}, \frac{5}{4}, \frac{6}{5}, \ldots \\
a_{2}=\frac{4}{3} & a_{n}=\frac{n+2}{n+1} \\
a_{3}=\frac{4}{5} &
\end{array}
$$

4) Use the Binomial Theorem to expand each binomial and express the result in simplified form:
a) $(3 x+y)^{5}(3 x+y)^{5}={ }_{5} C_{0}(3 x)^{5}+{ }_{5} C_{1}(3 x)^{4} y+{ }_{5} C_{2}(3 x)^{3} y^{2}+{ }_{5} C_{3}(3 x)^{2} y^{3}+{ }_{5} C_{4}(3 x) y+{ }_{5} C_{5} y^{5}$

$$
=1 \cdot 3^{5} x^{5}+5 \cdot 3^{4} x^{4} y+\frac{5 \cdot 4}{1 \cdot 2} 3^{3} x^{3} y^{2}+\frac{5 \cdot 4}{1 \cdot 2} 3^{2} x^{2} y^{3}+5 \cdot 3 x y+1 \cdot y^{5} \quad \text { Note: } \begin{aligned}
& { }_{5} C_{3}={ }_{5} C_{2} \\
& { }_{5} C_{4}={ }_{5} C_{1}
\end{aligned}
$$

b) $(x-1)^{4}={ }_{4} C_{0} x^{4}+{ }_{4} C_{1} x^{3}(-1)+{ }_{4} C_{2} x^{2}(-1)^{2}+{ }_{4} C_{3} x(-1)^{3}+{ }_{4} C_{4}(-1)^{4}=x^{4}-4 x^{3}+\frac{4 \cdot 3}{1 \cdot 2} x^{2}-\frac{4 \cdot 3}{1 \cdot 2} x+1$

Note: ${ }_{4} C_{3}={ }_{4} C_{1}$

$$
(x-1)^{4}=x^{4}-4 x^{3}+6 x^{2}-4 x+1
$$

