TEST 1 @ 120 points

Write in a neat and organized fashion. You should use a pencil. For an exercise to be complete there needs to be a detailed solution to the problem. Do not just write down an answer. No proof, no credit given!

1. If f(x) = x - 3 and g(x) = 2x + 5, find each of the following:

(10 points)

a) What is the domain of g?

c) Does g have an inverse? Explain.

Yes y=g(x) is an accending line, there it passes the horizontal line test, then for it is a one-to-one fundin

e) Find $(f \circ g)(x)$.

$$(f \circ g)(x) = f(g(x))$$

= $f(2x+5)$
= $2x+5-3$
= $2x+2$
 $(f \circ g)(x) = 2x+2$

b) What is the range of g?

$$y \in \mathbb{R}$$

d) Find $g^{-1}(x)$.

$$A+(0) y = 2x+5$$

 $2x = y-5$
 $x = \frac{y-5}{2}$

$$y = \frac{x-y}{2}$$

$$y = \frac{x-5}{2}$$
 $y = \frac{x-5}{2}$

f) Find
$$f(g(0))$$
;
We know $(fog)(x) = 2x+2$
then $(fog)(o) = f(g(o)) = 7.0+2$

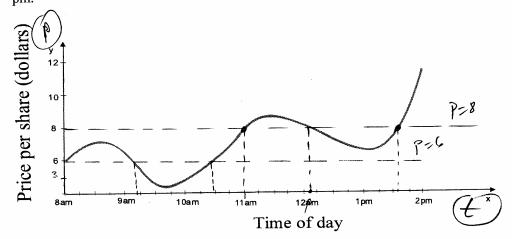
2. Let $f(x) = \frac{3x-1}{x-5}$.

(10 points)

a) Find f(1).

$$f(1) = \frac{3 \cdot 1 - 1}{1 - 5}$$

$$=\frac{2}{-4}$$


$$=\frac{-1}{2}$$

b) Find f(a+h)

$$f(a+h) = \frac{3(a+h)-1}{a+h-5}$$

$$f(a+h) = \frac{3a+3h-1}{a+h-5}$$

. The value of a stock varies during the course of any trading day. The price per share "P" of a certain stock is shown on the graph below for a particular trading day. Note "t" represents any time between 8 am and 2 (10 points) pm.

a) Is "t" (the time of the day) a function of "P" (the price per share)?

* t is not a function of P becouse then are P values (input) for which then is more than one t value (out put) if P=6, t = 9:15 and 10:30. Pix a function of t becouse for every t, there is truly one P. P= f(t)

Using the graph, estimate the answers to the following questions (Use the correct units).

b) What is the domain?

$$t \in [8aw, 2pm]$$

c) What is the range?
$$P \in [1, 5 \#]$$

c) For what value(s) of "t" does P(t)= 2 and what does it mean in practical terms? = 12:00 pm P(t) = D when t = 1/m > t = 1:35 pm and t = 12:00 pm P(t) = B tells us the times when the share was \$9.

4. Let
$$g(x) = \begin{cases} 1 - 2x^2, x \le 4 \\ 3x + 9, x > 4 \end{cases}$$
.

(10 points)

a) Find
$$g(10)$$

 $g(10) = 3.10 + 9$
 $= 39$
(becouse $x = 10 > 4$)

b) Find
$$g(\sqrt{2})$$
.
$$g(\sqrt{2}) = 1-2(\sqrt{2})^{2}$$

$$= 1-2\cdot 2$$

$$= -3$$

$$(61 cour x = \sqrt{2} 21.4 \le 4)$$

5. Match the graphs (I) – (VI) with the equations given below. (You shouldn't need to graph each equation to determine which is which!) NOTE: The x and y scales may be unequal. Show all work. (10 points)

a. y = .005x + .009 m = 0.005 > 0 b = 0.009 > 0ascurding line position y - N

d. $x - \sqrt{1000} = 0$ $x = \sqrt{1000}$ voitical line

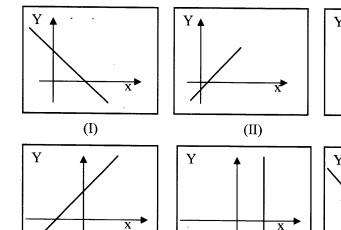
b. $x = -\pi y$ $y = \frac{-1}{\pi} X$ $m = \frac{-1}{\pi} < 0 \mid = 0$ b = 0discussing line
through (0,0) [1]

e. 3x + 4y + 10 = 0 4y = -3x - 10 $y = \frac{-3}{4}x - \frac{10}{4}$ $4y = -\frac{3}{4}x - \frac{10}{4}$ $4y = -\frac{3}{4}x - \frac{10}{4}x - \frac{10}x - \frac{10}{4}x - \frac{10}{4}x - \frac{10}{4}x - \frac{10}{4}x - \frac{10}x - \frac{10}{4}x - \frac{10}{4}x - \frac{10}{4}x - \frac{10}x - \frac{10}{4}x - \frac{10}{4}$

(V)

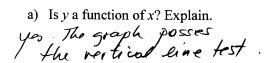
 $c. y = \frac{5}{2} - \frac{3}{4}x$ $y = \frac{-3}{4}x + \frac{5}{2}$ $m = \frac{-3}{4} < 0 = 7$ $b = \frac{5}{2} > 0$ discuscing line positive y-0

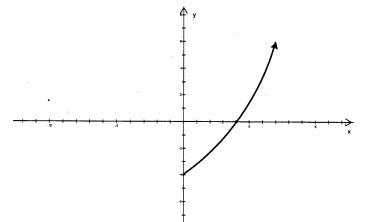
f. y=351x-140 m=35/>0 b=-140<0ascurding line


ugative y-n

 $\overline{\mathbf{x}}$

X


(III)


(VI)

(IV)

6. A graph is given. Answer the following: (10 points)

b) If
$$y = f(x)$$
, find the domain and range of f .

(10 points)

a) Slope 5 and passing through
$$(-3, -5)$$

b) passing through
$$\left(\frac{1}{2}, -3\right)$$
 and $\left(\frac{3}{2}, -5\right)$.
 $M = \frac{2y}{\Delta x} = \frac{-3 - (-5)}{\frac{1}{2} - \frac{3}{2}} = \frac{-3 + 5}{-\frac{3}{2}} = \frac{2}{-\frac{3}{2}}$

$$m = -2 \quad \left(\frac{1}{2}, -3\right)$$

$$y - y_1 = m(x - x_1)$$

$$y - (-3) = -2(x - \frac{1}{2})$$

$$y + 3 = -2(x - \frac{1}{2})$$

8. Find an equation of the line that passes through the point (2,1) and is perpendicular to
$$3x + 4y = 12$$
.

(10 points)

Line
$$19(211)$$
 $13x + 4y = 12$
 $13x + 4y$

$$y-1=\frac{4}{3}(x-2)$$

a)
$$\begin{cases} \frac{1}{16}x - \frac{3}{4}y = -1 \\ \frac{3}{4}x + \frac{5}{2}y = 11 \end{cases}$$
 LCD = 16

$$\begin{cases} x - 12y = -16 \\ 3x + 10y = 44 \end{cases}$$

$$\begin{cases} 3x + 10y = 44 \\ 3x + 10y = 44 \end{cases}$$

$$\begin{cases} 46y = 9z \\ 46y = 9z \end{cases}$$

$$\begin{cases} y = \frac{92}{96} = 2 \\ y = 2 \end{cases}$$

$$X - 12y = -16$$

 $X - 12 \cdot 2 = -16$
 $X - 2y = -16$
 $X = 2y - 16$
 $X = 9$

b)
$$\begin{cases} 2x - y + 1 = 0 \\ -4x + 2y = -6 \end{cases}$$

$$\int -4x + 2y = -6$$

$$\frac{1}{1} + \frac{1}{1} + \frac{1}{1} = \frac{1}$$

There for, the system has NO SOUTIONS

- 10. Choose TWO of the following word problems. Show clearly what your variables represent. Show clearly the equation(s) you use to solve each problem. (10 points each)
- (A) One week, a computer store sold a total of 36 computers and hard drivers. The revenue from these sales was \$27,710. If computers sold for \$1180 per unit and hard drivers for \$125per unit, how many of each did the store sell?
- (B) You invested \$7000 in two accounts paying 6% and 8% annual interest, respectively. If the total interest earned for the year was \$520, how much was invested at each rate?
- (C) When a plane flies with the wind, it can travel 800 miles in 5 hours. When the plane flies in the opposite direction, against the wind, it takes 8 hours to fly the same distance. Find the rate of the

TOTAL HARD DRIVERS \$ 125/unit Y

REVENUE = \$ 27,710

Let x = the number of hard driver sold

y = the number of hard driver sold $\begin{cases} x + y = 36 \\ 1.80 \times + 125 y = 27,710 \end{cases} - 1180$ $-1180 \times -1180 y = -42,480$ $1180 \times +125 y = 27,710$ 7 -1055 y = -14,770 $y = \frac{14770}{1055} = 14$ Menfor, the computer sold 22 computers and 14 hord drive

). \$7000 \ Taccount 68% X\$ Let x = the amount innested into the 1st account y = the amount, invested in the and account as at 6% interest polo intent 1-6x-64=-42,000 1 6x+84= 52,000 24=10,000 X+y=7000 X + 5000 = 7000 X= 2009 Therefore, 2000 & were 14 withed in the 1st account 5000 of were in wisted in the rud account

-					
(c)	Bristan	Rati	Time		
with aird	800 mi	ptw	sh		
aspirational	800 mi	p-w	Ph		
Let p = the qued of the place in still air w = the qued of the wind we know Distance = Rate. time					
$ \begin{cases} 400 = 5(p+w) \mid \div 5 \\ 800 = 8(p-w) \mid \div 8 \end{cases} $					
6 160 = p+w 100 = p-w					
(D) 260 - 2P					
p= 130 m/h the speed of the plane					
ptw=160					
130+ W=) for of	ud of t	tae usud	

EXTRA CREDIT @ 5 POINTS

Let n = f(A) be a function that gives the number of gallons of paint required to cover a house of area

A = input (independent variable) n = output (dependent variable)

(a) Using the fact that 1 gallon of paint will cover 250 ft^2 , evaluate f(20,000). $f(20,000) = ? If A = 20,000 ft^2, find how many gollows$ $f(20,000) = \frac{20,000}{250} f(20,000) = 90 gollows$

(b) Find a formula for f(A), the amount of paint (in gallons) required to cover a house of area $A ft^2$.

f(A) = total area

f(A) = A /

(c) Explain the meaning of the expressions f(A+10) and f(A)+10 in the context of painting.

I(A+10) = n = amount of paint needed to conor an area 10 Hz larger than A

f(A)+10 = n = 10 gelev- more paint than the amount needed to cover an orea A

EXTRA CREDIT @ 4 POINTS

If f(x) = 3x and g(x) = x + 5, find $(f \circ g)^{-1}(x)$.

Fint, let's find (fog)(x)

 $(f \circ g)(x) = f(g(x))$ = f(x+5) $(f \circ g)(x) = 3(x+5)$

Non, we'll find (fog) (x)

Let y= 3x+15 3x= y-15 X= 4-15

A, (fog) 1x)= 4-15