Math 71 Spring 06
January 10 \& 12, 2006
REVIEW
Chapter 1 - The Real Number System
In class work: Solve all exercises.
(Sections $1.1 \& 1.2$)
Definition A set is a collection of objects (elements).
The Set of Natural Numbers \mathbb{N}

$$
\mathbb{N}=\{1,2,3,4,5, \ldots\}
$$

The Set of Whole Numbers \boldsymbol{W}

$$
W=\{0,1,2,3,4,5, \ldots\}
$$

The Set of Integers \mathbb{Z}
$\mathbb{N} \subset W \subset \mathbb{Z}$

$$
\mathbb{Z}=\{\ldots,-4,-3,-2,-1,0,1,2,3,4,5, \ldots\}
$$

$\underline{\text { The Set of Rational Numbers } \mathbb{Q}}$
$\mathbb{N} \subset W \subset \mathbb{Z} \subset \mathbb{Q}$

$$
\mathbb{Q}=\left\{\left.\frac{a}{b} \right\rvert\, a, b \in \mathbb{Z}, b \neq 0\right\}
$$

The Set of Irrational Numbers
Examples: $\sqrt{2},-\sqrt{5}, \pi$
$\underline{\text { The Set of Real Numbers } \mathbb{R}}$
$\mathbb{N} \subset W \subset \mathbb{Z} \subset \mathbb{Q} \subset \mathbb{R}$

$$
\mathbb{R}=\{x \mid x \text { isrational or } x \text { is irrational }\}
$$

Mathematical Symbols

SYMBOL	MEANING	EXAMPLES
$=$	is equal to	
\neq	is not equal to	
\in	belongs to (about an element)	
\notin	it doesn't belong to	
$<$	is less than	
\leq	is less than or equal to	
$>$	is greater than	
\geq	is greater than or equal to	
\forall	any	

Properties of Real Numbers

PROPERTIES	ADDITION +	MULTIPLICATION •
COMMUTATIVITY	$a+b=b+a, \quad \forall a, b \in \mathbb{R}$	$a b=b a \quad \forall a, b \in \mathbb{R}$
ASSOCIATIVITY	$(a+b)+c=a+b+c), \forall a, b, c \in \mathbb{R}$	$(a b) c=a(b c), \quad \forall a, b, c \in \mathbb{R}$
IDENTITY ELEMENT	$\begin{gathered} 0 \\ a+0=0+a=a, \forall a \in \mathbb{R} \end{gathered}$	$\begin{gathered} 1 \\ a \cdot 1=1 \cdot a=a, \forall a \in \mathbb{R} \end{gathered}$
INVERSE ELEMENT	$\forall a \in \mathbb{R}$, there is $-a \in \mathbb{R}$ such that $a+(-a)=(-a)+a=0$	$\forall a \in \mathbb{R}, a \neq 0$, there is $\frac{1}{a} \in \mathbb{R}$ such that $a \cdot \frac{1}{a}=\frac{1}{a} \cdot a=1$
DISTRIBUTIVITY	$\xrightarrow[\text { multiply out (remove parentheses) }]{\stackrel{a(b+c)=a b+a c}{\stackrel{~ f a c t o r ~ o u t ~ t h e ~ c o m m o n ~ f a c t o r ~}{l}}}$	

Exercise \#1 Find the opposite and the reciprocal (if any) of each number:

The Number	Its Opposite	Its Reciprocal

The Double Negative Rule

$$
-(-a)=a
$$

(Section 1.2)

The Absolute Value of a Number

Definition (1) The absolute value of a number is the distance between the number and 0 (the origin) on the number line.

$$
|a|=\operatorname{dist}(a, 0)
$$

Property $\quad|a| \geq 0, \quad \forall a \in R$
Definition (2)

$$
|a|= \begin{cases}a, & \text { if } a \geq 0 \\ -a, & \text { if } a<0\end{cases}
$$

Properties

$$
\begin{align*}
& |a b|=|a| \cdot|b|, \forall a, b \in \mathbb{R} \tag{1}\\
& \left|\frac{a}{b}\right|=\frac{|a|}{|b|}, \forall a, b \in \mathbb{R}, b \neq 0
\end{align*}
$$

Note: $\quad|a+b| \neq|a|+|b|$
Example: \qquad
$|a-b| \neq|a|-|b|$
Example: \qquad
Exercise \#2 Simplify the following:
a) $|-7|=$
b) $-(-7)=$
c) $-|-7|=$
d) $-|-(-7)|=$

Exercise \#3 Simplify the following:
a) $(-5)^{2}-3^{2}+|10-2 \cdot 3| \quad$ (A: 20)
b) $-18 \div(-3)^{2}+|-8|-|-4|$
c) $\frac{(-4)^{2}-\left|1-2^{3}\right|}{-(-2)^{3}+(-1)^{125}}$
(A: $\frac{9}{7}$)
d) $\frac{9[4-(1+6)]-(3-9)^{2}}{5+\frac{12}{5-\frac{6}{2+1}}}$

Exercise \#4 Evaluate the following expressions if $x=2, y=-3, z=-1$:
a) $\frac{|x y|}{3 z}$
b) $\frac{3 y^{2}-x^{2}+1}{y|z|}$
c) $y z^{3}-(x y)^{3}$
(Section 1.6)

Properties of Integral Exponents

Definition If $n \in \mathbb{N}$, then $\quad a^{n}=a \cdot a \cdot \ldots \cdot a$ n times
a is called base and n is called power (exponent).

PROPERTY		EXAMPLES
The Product Rule	$a^{m} \cdot a^{n}=a^{m+n}$	
The Quotient Rule	$\frac{a^{m}}{a^{n}}=a^{m-n}$	
The Zero-Exponent Rule	$a^{0}=1, \forall a \neq 0$	
The Negative-Exponent	$a^{-n}=\frac{1}{a^{n}}$	
Rule	$\left(a^{m}\right)^{n}=a^{m \cdot n}$	
The Power Rule	$(a b)^{n}=a^{n} \cdot b^{n}$	$b^{n}=\frac{a^{n}}{b^{n}}$
Products to Power		

Exercise \#5 Simplify the following expressions:
a) $x-5[x-5(x-5)]$
(A: $21 x-125$)
b) $5(a-1)-4[2 a-4(a-3)]$
c) $x^{2} y(x y-x)-7 x y\left(x^{2} y-x^{2}\right)$
$\left(A:-6 x^{3} y^{2}+6 x^{3} y\right)$
d) $(-8 x y)\left(x^{5} y^{4}\right)(-4 x y)$
e) $x\left[2 x^{2}+x(x-3(x-1))\right]$

Exercise \#6 Simplify each expression .
Write answers without using parentheses or negative exponents.
a) $\frac{y^{2}}{y y^{-2}}$
$\left(A: y^{3}\right)$
b) $\left(\frac{a^{2} b^{-1}}{4 a^{3} b^{-2}}\right)^{-3}$
$\left(A: \frac{64 a^{3}}{b^{3}}\right)$
c) $\frac{a^{0}+b^{0}}{2(a+b)^{0}}$
d) $\left(\frac{-2 a^{-4} b^{3} c^{-1}}{3 a^{-2} b^{-5} c^{-2}}\right)^{-4}$
$\left(A: \frac{81 a^{8}}{16 b^{32} c^{4}}\right)$
e) $\left(\frac{2 x^{-4} y}{x^{5} y^{5}}\right)^{-3}\left(\frac{4 x^{-2} y^{0}}{x^{7} y^{2}}\right)^{2}$
$\left(A: 2 x^{9} y^{8}\right)$
f) $\frac{24 x^{2} y^{13}}{-2 x^{5} y^{-2}}$
$\left(A:-\frac{12 y^{15}}{x^{3}}\right)$
g) $\left(-4 x^{-4} y^{5}\right)^{-2}\left(-2 x^{5} y^{-6}\right)$
$\left(A:-\frac{x^{13}}{y^{16}}\right)$

Sets. Operations with Sets

Example\#1 Let A and B be two sets of elements: $A=\{a, b, c\}, \quad B=\{a, b, c, d\}$ $a \in A$ because a is an element of A $d \notin A$ because d is not an element of A.

$$
\{a, b, c\}=\{b, a, c\}
$$

Definition $\quad A \subset B \quad \mathbf{A}$ is included in \mathbf{B} if any element of A is also in B .
Example \#2 $\{a, b, c\} \subset\{a, b, c, d\}$
$\{1,2,3\} \not \subset\{1,2\}$

Operations with sets
$\cup-$ "union" $\quad A \bigcup B=\{x \mid x \in A$ or $x \in B\}$
Examples:
\cap-"intersection" $A \cap B=\{x \mid x \in A$ and $x \in B\}$
Examples:

The Empty Set \varnothing - the set with no elements

Definition A number \boldsymbol{a} is less than a number $\boldsymbol{b}(a<b)$ if a is to the left of b on the number line.
Exercise \#7 Write equivalent statements:
a) $2 \leq 3$ \qquad
b) $2>y$ \qquad
c) $5>x \geq-2$ \qquad
d) $-4<-2$ \qquad

Intervals of real numbers

$[a, b]=\{x \mid a \leq x \leq b\}$

$(a, b)=\{x \mid a<x<b\}$

$[a, \infty)=\{x \mid x \geq a\}$
$(a, \infty)=\{x \mid x>a\}$

$(-\infty, a]=\{x \mid x \leq a\}$

$(-\infty, a)=\{x \mid x<a\}$

Exercise \#8 Do the following operations and graph the solution set:
a) $[-2,5] \cup[-3,1]=$
b) $[-2,5] \cap[-3,1]=$
c) $(1, \infty) \cap(-3,4)=$
d) $(-\infty, 2) \cup[0, \infty)=$
e) $(-4,-1) \cap(-1,2)=$

Exercise \#9 Graph the following sets and express them using interval notation:
a) $\{x \mid x \leq-2\}=$
b) $\{x \mid 2<x \leq 3\}=$
c) $\{x \mid-3 \geq x \geq-7\}=$
(Sections $1.4 \& 1.5$)

Linear Equations

Definition An equation is a mathematical statement that two algebraic expressions are equal.
Examples:

Types of Equations

(1) IDENTITY $=$ an equation which is always true regardless of the value of the variable.

Examples: $3=3$

$$
x+1=x+1
$$

(2) CONTRADICTION = an equation which is always false regardless of the (INCONSISTENT) value of the variable.

Examples: $\quad 5=7$

$$
x+2=x+4
$$

(3) CONDITIONAL = an equation whose truth or falsehood depends on the value of the variable.

Examples: $\quad x+2=5$

Exercise \#10 Determine the type of each of the following equations:
a) $2(x-3)=2 x-3$
b) $5 u-4(u-1)-u=u-4-(u-2)$
c) $5(x+2)=5 x+10$
d) $3(w+1)=w+3$

Definition A solution of an equation is the value of the variable that satisfies the equation

Definition The process of finding the values that satisfy an equation is called solving the equation.

Exercise \#11 Determine which of the listed values satisfies the given equation:
a) $2 x+3=6, \quad x=0, x=\frac{3}{2}$
b) $6-2 w=10-3 w, \quad w=-4, w=1$

Properties of Equality

If $a=b$, then $\left\{\begin{array}{l}a+c=b+c, \forall c \in \mathbb{R} \\ a-c=b-c, \forall c \in \mathbb{R} \\ a c=b c, \forall c \in \mathbb{R} \\ \frac{a}{c}=\frac{b}{c}, \forall c \neq 0\end{array}\right.$

Exercise \#12 Solve the following equations.
a) $9(6+x)=$
b) $\frac{3}{5} x+2=\frac{10}{3}$
$\left(A: x=-\frac{17}{4}\right)$ i)
i) $0.8 q-3.2=1.6$
$(A: q=6)$
$\left(A: x=\frac{20}{9}\right)$ j) $\frac{x+1}{4}=\frac{1}{6}+\frac{2-x}{3}$ $(A: x=1)$
c) $\frac{3(n-2)}{5}=\frac{3 n+6}{6}$
$(A: n=22)$
k) $\frac{1}{4} m+\frac{2}{3} m=\frac{1}{6}$
$\left(m=\frac{2}{11}\right)$
d) $9(a+5)-10(1-a)=14\left(A: a=-\frac{21}{19}\right)$

1) $\frac{5}{6}=\frac{2 u-3}{5}$
$\left(A: u=\frac{43}{12}\right)$
e) $2[3(y+1)-(2 y+3)]=-2(A: y=-1)$
m) $\frac{2 m-1}{2}-\frac{3 m-1}{3}=\frac{4 m-1}{4}$
f) $\frac{x+1}{3}=5-\frac{x+2}{7} \quad\left(A: x=\frac{46}{5}\right)$
$\left(A: m=\frac{1}{12}\right)$
g) $\frac{x+4}{2}+\frac{x+1}{4}=3 \quad(A: x=1)$ o) $\frac{2}{5}=\frac{2 t+3}{6} \quad\left(A: t=-\frac{3}{10}\right)$
h) $\frac{2}{3}(v-4)=2 \quad(A: v=7) \quad$ p) $0.3 r+1.2(20)=0.8(r+20) \quad(A: r=16)$
q) Evaluate $x^{2}-(x y-y)$ for x satisfying $\frac{3(x+3)}{5}=2 x+6$ and y satisfying $-2 y-10=5 y+18$.

Exercise \#13 Solve each formula for the specified variable:
a) $v=k+g t$, for $\mathrm{t} \quad\left(A: t=\frac{v-k}{g}\right)$
e) $A=\frac{1}{2} h(a+b)$ for $a \quad\left(A: a=\frac{2 A}{h}-b\right)$
b) $\mathrm{S}=3 \pi \mathrm{~d}+\pi \mathrm{a}$, for $\mathrm{d}\left(A: d=\frac{S-\pi a}{3 \pi}\right)$
f) $A=2 l w+2 l h+2 w h$ for l

$$
\begin{aligned}
& \left(A: l=\frac{A-2 w h}{2(w+h)}\right) \\
& \left(A: r=\frac{A-p}{p t}\right)
\end{aligned}
$$

c) $A=P(1+r t)$, for r
d) $A=2 w^{2}+4 l w$, for 1

$$
\left(A: l=\frac{A-2 w^{2}}{4 w}\right)
$$

Exercise \#14 In a triangle, the measures of the three angles are consecutive integers. What is the measure of each angle?
(A: 59, 60, 61)

Exercise \#15 According to one mathematical model, the average life expectancy for American men born in 1900 was 55 years. Life expectancy has increased by about 0.2 year for each birth year after 1900. If this trend continues, for which birth year will the average life expectancy be 85 years?
(A: 2050)
Exercise \#16 In 2003, the price of a BMW 7 Series was approximately $\$ 80,500$ with a depreciation of $\$ 8705$ per year. After how many years will the car's value be $\$ 19,565$?
(A: 7 years)
Exercise \#17 Suppose that we agree to pay you 8 cents for every problem in this chapter that you solve correctly and fine you 5 cents for every problem done incorrectly. If at the end of 26 problems we do not owe each other any money, how many problems did you solve correctly?
(Section 1.3)

A Review of the Rectangular Coordinate System Graphing Equations

Definition The general form of a linear equation in two variables is $a x+b y=c$, where a and b are not both zero.

Definition A solution of an equation in two variable is an ordered pair (x, y) that satisfies the equation.

Definition The graph of an equation is the set of all points that satisfy the equation.

Theorem The graph of an equation of the form $a x+b y=c$ is a line provided that a and b are not both zero.

Property \quad i) The ordered pair (x, y) is a solution of an equation if and only if (x, y) belongs to the graph of the given equation.
ii) The ordered pair (x, y) is not a solution of an equation if and only if (x, y) doesn't belong to the graph of the given equation.

Definition The x - intercept of a line is the point where the line intersects the \boldsymbol{x}-axis. The y-intercept of a line is the point where the line intersects the \boldsymbol{y}-axis.

Exercise \#19 Graph the following equations:
a) $y=x^{3}$
b) $y=|x|$
c) $y=\frac{1}{x}$
d) $y=2 x+4$
e) $2 x+3 y=6$

Exercise \#20 Match the story with the correct figure.
a) As the blizzard got worse, the snow fell harder and harder.
b) The snow fell more and more softly.
c) It snowed hard, but then it stopped. After a short time, the snow started falling softly.
d) It snowed softly, and then it stopped. After a short time, the snow started falling hard.

