Factoring = writing an expression as a product	Factor 12: $12 = 6 \cdot 2$
Prime factorization = writing an expression as a product of prime factors	The prime factorization of 12: $12 = 2 \cdot 2 \cdot 3$
	Find the GCF of $8x^2y$, $12x^3y^2$, and $60x^2y$
The Greatest Common Factor (GCF) The GCF of numerical The GCF of the variable	$8x^2y = 2 \cdot 2 \cdot 2 \cdot x^2y$
of a list of terms = coefficients factors	$12x^3y^2 = 2 \cdot 2 \cdot 3 \cdot x^3y^2$
use prime factorization contains the smallest exponent on each common variable	$60x^2y^3 = 2 \cdot 2 \cdot 3 \cdot 5 \cdot x^2y^3$
	$\mathbf{GCF} = 2 \cdot 2 \cdot x^2 y = 4x^2 y$
	Factor: $8x + 20 = 4(2x + 5)$
	$8x = 2 \cdot 2 \cdot 2 \cdot x$
Find the GCF of the terms	$20 = 2 \cdot 2 \cdot 5$
Use the distributive property	$GCF = 2 \cdot 2 = 4$
	Factor: $7(x+2) + y(x+2) = (x+2)(7+y)$ GCF = x+2
To factor by grouping:	Factor: $10x^2 + 15x - 6xy - 9y =$
Stop 1. Chown the terms into two grows of two terms	Step 1: $(10x^2 + 15x) - (6xy + 9y) =$
 Step 1: Group the terms into two groups of two terms. Step 2: Factor out the GCF from each group. 	Step 2: $5x(2x+3) - 3y(2x+3) =$
 Step 3: If there is a common factor, factor it out. 	Step 3: $(2x+3)(5x-3y)$
• Step 4: If not, rearrange the terms and try Steps 1-3 again.	(2x+3)(3x+3y)

Special products. Factoring Square Trinomials and the Difference of Two Squares

A perfect square = a positive integer that is the square of a natural number. This concept of perfect squares extends to algebraic expressions.

A perfect square trinomial = a trinomial that is the square of some binomial.

Squaring a binomial: Reverse the concept: **Factoring Perfect Square Trinomials**

$$(a+b)^2 = a^2 + 2ab + b^2$$
 $a^2 + 2ab + b^2 = (a+b)^2$
 $(a-b)^2 = a^2 - 2ab + b^2$ $a^2 - 2ab + b^2 = (a-b)^2$

Difference of squares and cubes; Sum of cubes

$$(a-b)(a+b) = a^{2} - b^{2}$$

$$(a-b)(a^{2} + ab + b^{2}) = a^{3} - b^{3}$$

$$(a-b)(a^{2} + ab + b^{2}) = a^{3} - b^{3}$$

$$(a+b)(a^{2} - ab + b^{2}) = a^{3} + b^{3}$$

$$a^{3} - b^{3} = (a-b)(a^{2} + ab + b^{2})$$

$$a^{3} + b^{3} = (a+b)(a^{2} - ab + b^{2})$$

To recognize a perfect square trinomial:

- Step1: See if there are two terms that are perfect squares: a^2 , b^2
- If no perfect squares, then the trinomial is not a perfect square.
- Step 2: See if the third term can be written as twice the product of a and b: 2ab

Perfect squares:
$$1 = 1^2$$
, $4 = 2^2$, $9 = 3^2$, $16 = 4^2$,...

Square each binomial:

$$(x+6)^{2} = x^{2} + 2 \cdot x \cdot 6 + 6^{2} = x^{2} + 12x + 36$$
$$(2x-3)^{2} = (2x)^{2} - 2 \cdot (2x) \cdot 3 + 3^{2} =$$
$$= 4x^{2} - 12x + 9$$

Multiply:

$$(7-x)(7+x) = 7^2 - x^2 = 49 - x^2$$
$$(2x-1)(2x+1) = (2x)^2 - 1^2 = 4x^2 - 1$$

Factor:

$$x^{2} + 6x + 9 = x^{2} + 2 \cdot x \cdot 3 + 3^{2} = (x+3)^{2}$$

Step 1: x^2 and 9 are perfect squares.

Step 2: $6x = 2 \cdot x \cdot 3$

Factor:

$$4x^{2} - 12x + 9 = (2x)^{2} - 2 \cdot (2x) \cdot 3 + 3^{2}$$
$$= (2x - 3)^{2}$$

Factor:
$$x^2 - 25 = x^2 - 5^2 = (x - 5)(x + 5)$$

Factoring Trinomials of the Form $Ax^2 + Bx + C$

- Step1: Are there any common factors? If so, factor out the GCF.
- Step2: Can you recognize any special products?

Two terms: Is it the **difference of two squares?**

$$a^2 - b^2 = (a - b)(a + b)$$

Three terms: Is it a perfect square trinomial?

$$a^2 + 2ab + b^2 = (a+b)^2$$

$$a^2 - 2ab + b^2 = (a - b)^2$$

• Step3: Factor using the method that applies, according to the coefficient of x^2

When the coefficient of
$$x^2$$
 is 1 $x^2 + Bx + C$
 $x^2 + Bx + C = (x + ?)(x + ?)$

*Look after two numbers whose product = C (the constant term) sum = B (the coefficient of x)

When the coefficient of x^2 is not 1. $Ax^2 + Bx + C$

$$Ax^{2} + Bx + C = Ax^{2} + ?x + ?x + C$$

$$p q$$
*Lock often two numbers x and x to require x

*Look after two numbers p and q to rewrite Bx = px + qx whose

product=
$$A \cdot C$$
 where A is the coefficient of x^2

C is the constant term

sum= B where B is the coefficient of x

*Then factor by grouping.

Factor:
$$x^2 + 12x + 20$$

Step1 – there are no common factors.

Step2 – there is no perfect square trinomial.

Step3 – the coefficient of x^2 is 1.

$$x^{2} + 12x + 20 = (x + ?)(x + ?) = (x+2)(x+10)$$

$$a \qquad b \qquad +2$$

$$ab=20 \qquad +10$$

$$\frac{a+b=12}{20=2\cdot 10}$$

Factor:
$$6x^2 + 28x - 10$$

Step1 – the GCF for all terms is 2. Factor 2 out:

$$6x^2 + 28x - 10 = 2(3x^2 + 14x - 5)$$

Step 2 – there is no perfect square trinomial.

Step 3 – the coefficient of x^2 is 3 (not 1).

Look to rewrite
$$14x = ax + bx = 15x - x$$

$$ab = 3 \cdot (-5) = -15$$

$$\underline{a+b=14}$$

$$3x^2 + 14x - 5 = 3x^2 + 15x - x - 5$$

Factor by grouping.

$$= 3x(x+5) - (x+5) = (x+5)(3x-1)$$

So,

$$6x^2 + 28x - 10 = 2(x+5)(3x-1)$$

Solving Quadratic Equations by Factoring			
A quadratic equation is an equation that can be written as	Quadratic Equations	Same equations in standard form	
$Ax^2 + Bx + C = 0$, where $A, B, C \in \mathbb{R}$, $A \neq 0$	$x^2 = 36$	$x^2 - 36 = 0$	
The form $Ax^2 + Bx + C = 0$ is called the standard form.	$y = -2y^2 + 5$	$2y^2 + y - 5 = 0$	
Zero Factor Property If $a, b \in \mathbb{R}$ and $a \cdot b = 0$, then $a = 0$ or $b = 0$.	If $(x+5)(2x-1)=0$, then $x+5=0$ or $2x-1=0$		
To Solve Quadratic Equations by Factoring:	Solve: $3x^2 = 13x - 4$		
• Step 1: Write the equation in standard form (one side is zero).	Step 1 – standard form: $3x^2 - 13x + 4 = 0$ Step 2 – factor (see 4.4) $(3x - 1)(x - 4) = 0$		
• Step 2: Factor completely.	Step 3 – zero property: $3x - 1 = 0$ or $x - 4 = 0$ Step 4 – solve each linear equation:		
 Step 3: Set each factor containing a variable equal to zero. (according to the Zero Property) Step 4: Solve the resulting equations. 	x	$=\frac{1}{3} \qquad \qquad x=4$	
• Step 5: Check solutions in the original equation.	Step 5 – check both solutions in the original equation		
	by replacing x with $\frac{1}{3}$ and	1 then x with 4	
Quadratic Equations and Problem Solving			
1. Understand the problem.- Read and reread it.	Helpful hints: Perimeter (P) = the sum of the lengths (l) of all sides.		
- Draw a diagram.		_	
- Choose a variable to represent the unknown.	Triangle Δ $P = l_1 + l_2$	$l_2 + l_3$ $A = \frac{base \cdot height}{2}$	
2. Translate the problem into an equation.3. Solve the equation.		2 3 2	
4. Interpret the results: discard the solutions that do not make sense as solutions of the problem. Check your solution in the stated problem and state your conclusion.	Square $P = 4l$ Rectangle $P = 2l$	$A = l^2 + 2w \qquad A = l \cdot w$	
	Right Triangle - Pythagor	ean Theorem:	
	$\left(leg\right)^2 + \left(leg\right)^2 = \left(hy\right)^2$	vpotenuse) ² /	