The Greatest Common Factor

Factoring = writing an expression as a product	Factor 12: $\quad 12=6 \cdot 2$
Prime factorization = writing an expression as a product of prime factors	The prime factorization of 12: $12=2 \cdot 2 \cdot 3$
The Greatest Common Factor (GCF) of a list of terms $\left.=$The GCF of numerical coefficients use prime factorizationThe GCF of the variable factors contains the smallest exponent on each common variable \right\rvert\,	Find the GCF of $8 x^{2} y, 12 x^{3} y^{2}$, and $60 x^{2} y^{3}$ $\begin{aligned} & 8 x^{2} y=2 \cdot 2 \cdot 2 \cdot x^{2} y \\ & 12 x^{3} y^{2}=2 \cdot 2 \cdot 3 \cdot x^{3} y^{2} \\ & 60 x^{2} y^{3}=2 \cdot 2 \cdot 3 \cdot 5 \cdot x^{2} y^{3} \\ & \text { GCF }=2 \cdot 2 \cdot x^{2} y=4 x^{2} y \end{aligned}$
To factor out the GCF: - Find the GCF of the terms - Use the distributive property	Factor: $\begin{aligned} 8 \mathrm{x}+20 & =4(2 \mathrm{x}+5) \\ 8 x & =2 \cdot 2 \cdot 2 \cdot x \\ 20 & =2 \cdot 2 \cdot 5 \end{aligned}$ $G C F=2 \cdot 2=4$ Factor: $\frac{7(x+2)}{\text { GCF }}=\frac{y(x+2)}{x+2}=(x+2)(7+y)$
To factor by grouping: - Step 1: Group the terms into two groups of two terms. - Step 2: Factor out the GCF from each group. - Step 3: If there is a common factor, factor it out. - Step 4: If not, rearrange the terms and try Steps 1-3 again.	Factor: $10 x^{2}+15 x-6 x y-9 y=$ Step 1: $\quad\left(10 x^{2}+15 x\right)-(6 x y+9 y)=$ Step 2: $\quad 5 x(2 x+3)-3 y(2 x+3)=$ Step 3: $\quad(2 x+3)(5 x-3 y)$

Special products. Factoring Square Trinomials and the Difference of Two Squares

A perfect square $=$ a positive integer that is the square of a natural number.
This concept of perfect squares extends to algebraic expressions.
A perfect square trinomial $=$ a trinomial that is the square of some binomial.

Squaring a binomial:

Reverse the concept: Factoring Perfect Square Trinomials
$(a+b)^{2}=a^{2}+2 a b+b^{2} \quad a^{2}+2 a b+b^{2}=(a+b)^{2}$
$(a-b)^{2}=a^{2}-2 a b+b^{2}$
$a^{2}-2 a b+b^{2}=(a-b)^{2}$

Difference of squares and cubes; Sum of cubes
$(a-b)(a+b)=a^{2}-b^{2} \quad a^{2}-b^{2}=(a-b)(a+b)$
$(a-b)\left(a^{2}+a b+b^{2}\right)=a^{3}-b^{3} \quad a^{3}-b^{3}=(a-b)\left(a^{2}+a b+b^{2}\right)$
$(a+b)\left(a^{2}-a b+b^{2}\right)=a^{3}+b^{3} \quad a^{3}+b^{3}=(a+b)\left(a^{2}-a b+b^{2}\right)$

To recognize a perfect square trinomial:

- Step1: See if there are two terms that are perfect squares: a^{2}, b^{2}
- If no perfect squares, then the trinomial is not a perfect square.
- Step 2: See if the third term can be written as twice the product of a and b: 2ab

Perfect squares: $1=1^{2}, 4=2^{2}, 9=3^{2}, 16=4^{2}, .$.

Square each binomial:
$(x+6)^{2}=x^{2}+2 \cdot x \cdot 6+6^{2}=x^{2}+12 x+36$
$(2 x-3)^{2}=(2 x)^{2}-2 \cdot(2 x) \cdot 3+3^{2}=$
$=4 x^{2}-12 x+9$
Multiply:
$(7-x)(7+x)=7^{2}-x^{2}=49-x^{2}$
$(2 x-1)(2 x+1)=(2 x)^{2}-1^{2}=4 x^{2}-1$

Factor:
$x^{2}+6 x+9=x^{2}+2 \cdot x \cdot 3+3^{2}=(x+3)^{2}$
Step 1: x^{2} and 9 are perfect squares.
Step 2: $6 x=2 \cdot x \cdot 3$
Factor:

$$
4 x^{2}-12 x+9=(2 x)^{2}-2 \cdot(2 x) \cdot 3+3^{2}
$$

$$
=(2 x-3)^{2}
$$

Factor: $\quad x^{2}-25=x^{2}-5^{2}=(x-5)(x+5)$

Factoring Trinomials of the Form $A x^{2}+B x+C$

- Step1: Are there any common factors? If so, factor out the GCF.
- Step2: Can you recognize any special products?

Two terms: Is it the difference of two squares?

$$
a^{2}-b^{2}=(a-b)(a+b)
$$

Three terms: Is it a perfect square trinomial?

$$
\begin{aligned}
& a^{2}+2 a b+b^{2}=(a+b)^{2} \\
& a^{2}-2 a b+b^{2}=(a-b)^{2}
\end{aligned}
$$

- Step3: Factor using the method that applies, according to the coefficient of x^{2}

$$
\begin{array}{ll}
\text { When the coefficient of } x^{2} \text { is } 1 & x^{2}+B x+C \\
x^{2}+B x+C=(x+?)(x+?) &
\end{array}
$$

*Look after two numbers whose

$$
\begin{aligned}
\text { product } & =\mathrm{C}(\text { the constant term }) \\
\text { sum } & =\mathrm{B}(\text { the coefficient of } \mathrm{x})
\end{aligned}
$$

When the coefficient of x^{2} is not $1 . \quad A x^{2}+B x+C$

$$
A x^{2}+B x+C=A x^{2}+? \underset{\mathrm{p}}{?} x+? \underset{\mathrm{q}}{?} x+\mathrm{C}
$$

*Look after two numbers p and q to rewrite $\mathrm{Bx}=\mathrm{px}+\mathrm{qx}$ whose
product $=A \cdot C \quad$ where A is the coefficient of x^{2}
C is the constant term
sum $=B$
where B is the coefficient of x
*Then factor by grouping.

Factor: $\quad x^{2}+12 x+20$
Step1 - there are no common factors.
Step2 - there is no perfect square trinomial.
Step3 - the coefficient of x^{2} is 1 .
$x^{2}+12 x+20=(x+?)(x+?)=(x+2)(x+10)$

$$
\frac{a+b=12}{20=2 \cdot 10}
$$

Factor: $\quad 6 x^{2}+28 x-10$
Step1 - the GCF for all terms is 2 . Factor 2 out:

$$
6 x^{2}+28 x-10=2\left(3 x^{2}+14 x-5\right)
$$

Step 2 - there is no perfect square trinomial.
Step 3 - the coefficient of x^{2} is 3 (not 1).
Look to rewrite $14 x=a x+b x=15 x-x$

$3 x^{2}+14 x-5=3 x^{2}+15 x-x-5$
Factor by grouping.

$$
=3 x(x+5)-(x+5)=(x+5)(3 x-1)
$$

So,
$6 x^{2}+28 x-10=2(x+5)(3 x-1)$

Solving Quadratic Equations by Factoring

A quadratic equation is an equation that can be written as

$$
A x^{2}+B x+C=0 \text {, where } A, B, C \in R, A \neq 0
$$

The form $A x^{2}+B x+C=0$ is called the standard form.

Quadratic Equations	Same equations in standard form
$x^{2}=36$	$x^{2}-36=0$
$y=-2 y^{2}+5$	$2 y^{2}+y-5=0$

Zero Factor Property \quad If $a, b \in R$ and $a \cdot b=0$, then $a=0$ or $b=0$.

To Solve Quadratic Equations by Factoring:

- Step 1: Write the equation in standard form (one side is zero).
- Step 2: Factor completely.
- Step 3: Set each factor containing a variable equal to zero.
(according to the Zero Property)
- Step 4: Solve the resulting equations.
- Step 5: Check solutions in the original equation.

Quadratic Equations and Problem Solving

1. Understand the problem.

- Read and reread it.
- Draw a diagram.
- Choose a variable to represent the unknown.

2. Translate the problem into an equation.
3. Solve the equation.
4. Interpret the results: discard the solutions that do not make sense as solutions of the problem. Check your solution in the stated problem and state your conclusion.

Helpful hints:

Perimeter $(\mathbf{P})=$ the sum of the lengths (l) of all sides.
Triangle $\quad \mathrm{P}=l_{1}+l_{2}+l_{3} \quad A=\frac{\text { base } \cdot h e i g h t}{2}$ 2
Rectangle \square $P=2 l+2 w$
$A=l^{2}$ Right Triangle - Pythagorean Theorem: $(l e g)^{2}+(l e g)^{2}=(\text { hypotenuse })^{2}$

