Review Test 2
 Chapters 3, 4, and 5

Answer the following questions. Make a drawing for each situation.

TRIANGLES

- When are two triangles congruent?
\qquad
\qquad
\qquad
\qquad
(SVV 'VSV 'SSS 'SVS :sıəмsu*)
- What special case of congruency do you know in the case of two right triangles?
(TH:JəMsuv)
- A triangle is isosceles if and only if \qquad .

- A triangle is isosceles if and only if \qquad .

- A triangle is equilateral if and only if \qquad .

- A triangle is equilateral if and only if \qquad .
- An exterior angle of a triangle is greater than \qquad .

- The sum of the measures of the angles of a triangle is \qquad .

- If the lengths of two sides of a triangle are unequal, then the measures of the angles opposite them are and the larger angle is opposite the longer \qquad .

- If the measures of two angles of a triangle are unequal, then the lengths of are unequal and the longer side is opposite the \qquad
\qquad .

- Given a line and a point not on the line, the is the shortest segment that can be drawn from the point to the line.

- In any triangle, the length of one side is \qquad than the sum of the lengths of the other two sides.
(ssə : :əммsu૪)
- An exterior angle of a triangle is equal to the sum of \qquad .

- The segment that joins the midpoints of two sides of a triangle is \qquad to the third side and its length is \qquad .
\qquad .

- A median of a triangle is \qquad .
(әр! әұ!

- An altitude of a triangle is \qquad .

- A perpendicular bisector of a side of a triangle is \qquad .

- The bisector of one angle of a triangle aivides the opposite side into segments that are to the lengths of \qquad .

- If a line parallel to one side of a triangle intersects the other two sides in different points, then:
a) two \qquad triangles are formed.
b) It divides the sides in \qquad (Ie!!u!s : iəmsuv)
- When are two triangles similar?

$$
\text { (} \square S S S^{‘} \square S \forall S \text { 'VV :১әмsu甘) }
$$

- What is the Pythagorean theorem? \qquad .
The triangle must be \qquad .

- What is the converse of the Pythagorean theorem? Is it true?

- What do you know about the altitude to the hypotenuse in a right triangle?
- The altitude divides the right triangle into two \qquad triangles. Each of these two triangle is also similar to \qquad .

- The altitude is the geometric mean of \qquad .

- One leg is the geometric mean of \qquad
(әsnuәұодКч әч ио

- In a right triangle, a leg opposes a 30 degree angle if and only if its length is \qquad of the length of the \qquad .

PARALLEL LINES CUT BY TRANSVERSALS

- If three or more parallel lines cut congruent segments on one transversal, then they cut on every transversal.

- Three parallel lines cut \qquad segments on any two transversals.

QUADRILATERALS

In a parallelogram,

- the opposite sides are \qquad and \qquad .

and
- the opposite angles are \qquad . \qquad

and
- the diagonals are not \qquad ; they are not \qquad ; they \qquad each other.
and
- the sum of the measures of the angles is \qquad .
a) two opposite sides are \qquad and \qquad .
or \qquad
b) both pairs of opposite angles are \qquad .
or

c) diagonals \qquad each other.

In a rectangle,

- the opposite sides are \qquad and \qquad .

and
- all angles are \qquad each \qquad .
and

- the diagonals are \qquad ; they are not \qquad ;
they \qquad each other.
and
- the sum of the measures of the angles is \qquad .

In a square,

- the opposite sides are \qquad and all sides are \qquad .

and
- all angles are \qquad each \qquad $-$
and

- the diagonals are \qquad ; they are \qquad ; they \qquad each other.
and
- the sum of the measures of the angles is \qquad .

In a rhombus,

- the opposite sides are \qquad and \qquad -

and
- the opposite angles are \qquad .
and
- the diagonals are not \qquad they are \qquad ; they \qquad each other.
and
- the sum of the measures of the angles is \qquad .

In a trapezoid,

- one pair of opposite sides are \qquad , but not \qquad .

and
- the diagonals are not \qquad ; they are not \qquad $;$ they do not \qquad each other.
and

- the sum of the measures of the angles is \qquad .

- the median is the segment joining the and its length is equal to
\qquad .

In an isosceles trapezoid

- the unparallel sides also known as \qquad are \qquad
and

- the base angles are \qquad .
and
- the diagonals are \qquad ; they donot each other.

Review the following problems:

Handout Sections $3.1 \& 3.2$ Problems 1, 2, 3, 4, 5, 6, 7, 8, 9, 10
Handout Section $3.3 \quad$ Problems 1, 2, 3, 4
Handout Section $3.5 \quad$ Problems 1, 2, 3, 4
Handout Sections $4.1 \& 4.2$ Problems 1, 2, 3
Handout Section $4.4 \quad$ Problems 1, 2, 3, 4
Quiz \#2 and \#3
All
Textbook 3.1 Problems 4, 9-12
Textbook 3.2
Textbook 3.3
Textbook 4.1
Problems 4, 6, 8
Textbook 4.2
Problems 9, 12, 13, 27, 28

Textbook 4.3
Textbook 4.4
Textbook 5.2
Textbook 5.3
Textbook 5.4

Problems 8, 10, 12, 14, 15, 19
Problems 1, 7, 10, 15, 17, 21
Problems 12, 28, 32, 35
Problems 6, 12, 16, 18, 20, 22, 2
Problems 2, 4, 5, 8, 9, 10, 15, 16, 18, 24, 27

Know the formal proofs of the follo wing theorems:

Handout Section 3.3 Theorems: T 3.3.3, T 3.3.4
Handout Sections 4.1 \& 4.2 Theorems: C 2.5.4, T 4.1.1, C 4.1.2, C 4.1.3, C 4.1.4, T 4.2.1, T 4.2.2, T 4.2.3

Handout Section 4.4
Theorems: C 4.4.2
Property: Given a triangle $\mathrm{ABC}, \mathrm{MN}$ parallel to BC, M on AB, N on AC , show that triangle AMN is similar to triangle ABC .

Draw a figure and write the hypothesis and conclusion. Mark the figure and write a formal proof.

1) If two line segments are medians of an equilateral triangle, then they are congruent.
2) If the bisector of an angle of a triangle is perpendicular to the opposite side, then the triangle is isosceles.
3) If a line segment is the median from the vertex angle of an isosceles triangle, then it bisects the vertex angle.
4) If the median of a triangle is perpendicular to one of its sides, then the triangle is isosceles.
5) In a triangle if an angle bisector is an altitude, then it is also a median.

Answer true or false:

1) The hypotenuse is the side opposite one of the acute angles in a right triangle.
2) An isosceles triangle can have an obtuse angle as one of its angles.
3) A right isosceles triangle has two right angles.
4) If three angles of one triangle are congruent with three angles of a second triangle, then the two triangles are congruent.
5) Triangles can be proved congruent using SSA.
6) Corresponding parts of congruent triangles are congruent.
7) The median to the base of an isosceles triangle bisects the vertex angle.
8) The measure of an exterior angle of a triangle is always greater than the measure of any of its interior angles.
9) If two angles of one triangle are congruent to two angles of a second triangle, the third angles are not necessarily congruent.
10) If a transversal is perpendicular to one of two parallel lines, it is perpendicular to the other line also.
11) If two angles of a quadrilateral are right angles, the quadrilateral is a rectangle. \qquad
12) A parallelogram is also a trapezoid. \qquad
13) In a trapezoid, two sides are always parallel. \qquad
14) If the four sides of a quadrilateral are congruent, it must be a square. \qquad
15) In a parallelogram, the diagonals bisect the angles. \qquad
16) In a rhombus, the diagonals bisect the angles.
17) Two congruent triangles are also similar.
18) Two similar triangles are also congruent.
\qquad
19) If two angles of one triangle are congruent to two angles of a second triangle, then the triangles are similar.
20) If an acute angle of a right triangle is congruent to an acute angle of a second right triangle, then the two triangles are similar.
21) A line through two sides of a triangle divides the sides proportionally.
22) If the three sides of one triangle are parallel, respectively, to three sides of a second triangle, then the triangles are similar.
23) Two right triangles are always similar triangles.
24) The altitude to the hypotenuse of a right triangle forms two triangles that are similar. \qquad
25) If the hypotenuse of an isosceles right triangle measures $8 \sqrt{2}$ inches, then each leg is 8 inches long.
26) The three sides of a right triangle could measure 9,40 , and 42 inches.
(Answers: 1F, 2T, 3F, 4F, 5F, 6T, 7T, 8F, 9F, 10T, 11F, 12F, 13T, 14F, 15F, 16T, 17T, 18F, 19T, 20T, 21F, 22T, 23F, 24T, 25T, 26F)
