Review Test 1 Chapters 1 & 2 and Appendix B

To prepare for the test, learn all definitions, be familiar with all theorems and postulates and study the following problems. Know how to translate a statement, problem or theorem into hypothesis (what's given), conclusion (what needs to be proved) and an appropriate drawing to illustrate the given situation.

Logic (Appendix B & 1.1)

Handout Introduction		Exercises # 2, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19 Symbolic forms and proofs of DeMorgan's Laws, Law of Detachment, Law of Negative Inference, Law of Syllogism.
Homework #1	Appendix B1: Appendix B2: Section 1.1:	Exercises # 16, 17, 18 All exercises listed Exercises # 4, 13, 14, 17, 18

Chapter 1

Important terms and concepts:

- Point		- angle	- reflexive relation	
- Line		- bisector of an angle	- symmetric relation	
- Ray		- types of angles	- transitive relation	
- Opposite rays		- congruent angles	- Postulates # 1 – 7	
- line segment		- complementary angles		
- midpoint		- supplementary angles		
- bisector of a line segment		- vertical angles		
- betweenness of points		- perpendicular bisector of a line segment		
- collinear points		- length of a segment	C	
- coplanar lines		- congruent segments		
Homework #2	Section 1.2:	Exercises # 45		
	Section 1.3:	Exercises # 10, 14, 24, 26 (including	proof)	
	Section 1.4:	Exercises # 17, 19, 20, 22		
Handout Sections 1.3 & 1.4		Exercises # 1, 2, 4 (write all steps down), 6, 9, 11 (write all steps down), 11, 12		
Homework #3	Section 1.5:	Exercises # 23, 26		
	Section 1.6:	Exercises # 1, $13 - 16$ (know how to	write the properties	
		mathematically)		
	Section 1.7:	Exercises # 1 – 6, 9, 11, 12, 14, 15		

Know the formal proof of the following theorems:

- 1) If two lines are perpendicular, then they meet to form right angles. (T 1.7.1) in class
- 2) If two lines meet to form a right angle, then these lines are perpendicular. (T 1.7.2) textbook
- 3) If two lines intersect, then the vertical angles formed are congruent. (T 1.7.5) in class.

Chapter 2

Important terms and concepts:

 parallel lines perpendicular lines parallel planes transversal 		 interior and exterior angles corresponding angles alternate interior and exterior angles 	 triangle types of triangles exterior angle of a triangle
Homework #4	Section 2.1: Section 2.2: Section 2.3: Section 2.4:	Exercises # 1, 2, 9, 12 – 14, 17, 19 Exercises # 1 – 8, 13, 16, 21 Exercises # 17 – 19, 21, 23 Exercises # 11, 15, 17, 20, 23, 26 – 28, 30, 3	1
Handout Sections 2.2	2 & 2.3	Exercises # 1, 2, 4, 5, 6	

Know the proofs (informal OK) of the following theorems:

- If two lines are each parallel to a third line, then these lines are parallel to each other. (T 2.3.6) in class
- 2) If two coplanar lines are perpendicular to a third line, then these lines are parallel to each other. (T 2.3.7) in class
- 3) In a triangle, the sum of the measures of the interior angles is 180. (T 2.4.1) in class + textbook.
- 4) The measure of an exterior angle of a triangle equals the sum of the two nonadjacent interior angles. (T 2.4.5) in class + textbook

Do you know the definitions and theorems we have studied in Chapters 1 and 2? Have you understood the definitions and theorems rather than memorizing them?

Use the figure to name the geometric figures requested:

- a) four lines
- b) four line segments
- c) eight rays
- d) two segments whose intersection is empty.

2) Draw a figure satisfying all the given facts:

- a) \overrightarrow{AB} , \overrightarrow{AC} , and \overrightarrow{CD} such that $\overrightarrow{AB} \cap \overrightarrow{AC} = \{A\}$, and $\overrightarrow{CD} \cap \overrightarrow{AB}$ such that A B D.
- b) \overline{EJ} , \overline{JS} , \overline{ES} , and \overrightarrow{KC} such that $\overline{EJ} \cap \overrightarrow{KC} = \emptyset$, $\overline{JS} \cap \overrightarrow{KC} = \emptyset$, and $\overline{ES} \cap \overrightarrow{KC} \neq \emptyset$.

3) Answer true or false:

a) *EJ* represents the length of \overline{EJ} . b) If EJ = JS, then $\overline{EJ} \cong \overline{JS}$. c) If $\overline{AB} \cong \overline{CD}$, then AB = CD. d) If EJ > JS, then $\overline{EJ} \cong \overline{JS}$. e) If $\overline{TJ} \cong \overline{KR}$, then TJ could be less than KR. f) Given any \overline{AB} and any \overline{LM} , there exists a unique point *P* on \overline{LM} such that $\overline{LP} \cong \overline{AB}$.

5) Rearrange the following statements into a proper order leading from the hypothesis to the conclusions: a) ES = CK b) KM = CS c) ES = CS d) $\overline{CK} \cong \overline{KM}$ e) $\overline{ES} \cong \overline{CK}$ f) CK = KM g) $\overline{ES} \cong \overline{CS}$ h) $\overline{KM} \cong \overline{CS}$

6)

Given A-D-G (formal proof) B-E-H C-F-I $\overline{DG} \cong \overline{EH}$ $\overline{BE} \cong \overline{CF}$ $\overline{EH} \cong \overline{FI}$ $\overline{AD} \cong \overline{BE}$

Prove $\overline{AG} \cong \overline{CI}$

7)

- Given the figure, name:
 a) three acute angles
 b) Two right angles
 c) One obtuse angle
 d) One straight angle
 e) Two complementary angles
 f) Two supplementary angles
 g) Two adjacent angles
- h) Two nonadjacent angles
- i) Two opposite rays
- j) Three noncollinear points.

R

0

S

С

K

Μ

Т

J

E

Е

Given the figure as marked, answer True or False:

- a) $\angle EJK$ is a right angle.
- b) $\angle LKN$ and $\angle PSM$ are vertical angles.
- c) $\angle LKN$ is supplementary to $\angle NKR$.
- d) $\angle JSR$ is complementary to $\angle RSM$.
- e) $\angle LKE \cong \angle KRS$
- f) $\angle EKJ$ is complementary to $\angle KEJ$
- g) $\angle EKJ$ is adjacent to $\angle JKR$.

Use the figure to answer true or false. Given $\overrightarrow{RS} \perp \overrightarrow{EM}$ $m \angle TOE = m \angle JOE = 30^{\circ}$

- a) $\angle MOS$ is a right angle
- b) $\angle JOE \cong \angle MOC$
- c) $\angle EOR = \angle EOT + \angle TOR$
- d) $\angle ROC$ and $\angle KOS$ are vertical angles.

Given $\overrightarrow{JK} \perp \overrightarrow{SM}$ $m \angle EJK = 118^{\circ}$

Find angles 1 through 5 (justify your steps)

Use the figure to answer

- a) Name four acute triangles
- b) Name four obtuse triangles.
- c) Name one right triangle.
- d) Name one isosceles triangles.
- e) Name one equilateral triangle.

9)

S