Review Test 1

Chapters $1 \& 2$ and Appendix B

To prepare for the test, learn all definitions, be familiar with all theorems and postulates and study the following problems. Know how to translate a statement, problem or theorem into hypothesis (what's given), conclusion (what needs to be proved) and an appropriate drawing to illustrate the given situation.

Logic (Appendix B \& 1.1)

Handout Introduction

Exercises \# 2, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19
Symbolic forms and proofs of DeMorgan's Laws, Law of Detachment, Law of Negative Inference, Law of Syllogism.

Homework \#1 Appendix B1: Exercises \# 16, 17, 18
Appendix B2: All exercises listed
Section 1.1: \quad Exercises \# 4, 13, 14, 17, 18

Chapter 1

Important terms and concepts:

- Point
- Line
- Ray
- Opposite rays
- line segment
- midpoint
- bisector of a line segment
- betweenness of points
- collinear points
- coplanar lines
- angle
- bisector of an angle - symmetric relation
- types of angles - transitive relation
- congruent angles - Postulates \# 1-7
- complementary angles
- supplementary angles
- vertical angles
- perpendicular bisector of a line segment
- length of a segment
- congruent segments

Homework \#2 Section 1.2: Exercises \# 45
Section 1.3: Exercises \# 10, 14, 24, 26 (including proof)
Section 1.4: Exercises \# 17, 19, 20, 22
Handout Sections 1.3 \& 1.4
Exercises \# 1, 2, 4 (write all steps down), 6, 9, 11 (write all steps down), 11, 12

Homework \#3 Section 1.5: \quad Exercises \# 23, 26
Section 1.6: Exercises \# 1, 13-16 (know how to write the properties mathematically)
Section 1.7: Exercises \# 1-6, 9, 11, 12, 14, 15
Know the formal proof of the following theorems:

1) If two lines are perpendicular, then they meet to form right angles. (T 1.7.1) - in class
2) If two lines meet to form a right angle, then these lines are perpendicular. (T 1.7.2) - textbook
3) If two lines intersect, then the vertical angles formed are congruent. (T 1.7.5) - in class.

Chapter 2

Important terms and concepts:

- parallel lines
- perpendicular lines
- parallel planes
- transversal
- interior and exterior angles - triangle
- corresponding angles
- alternate interior and exterior angles
- types of triangles
- exterior angle of a triangle

Homework \#4 Section 2.1: Exercises \# 1, 2, 9, 12-14, 17, 19
Section 2.2: \quad Exercises \# 1-8, 13, 16, 21
Section 2.3: Exercises \# 17 - 19, 21, 23
Section 2.4: Exercises \# 11, 15, 17, 20, 23, $26-28,30,31$

Handout Sections 2.2 \& $2.3 \quad$ Exercises \# 1, 2, 4, 5, 6

Know the proofs (informal OK) of the following theorems:

1) If two lines are each parallel to a third line, then these lines are parallel to each other. (T 2.3.6) in class
2) If two coplanar lines are perpendicular to a third line, then these lines are parallel to each other. (T 2.3.7) - in class
3) In a triangle, the sum of the measures of the interior angles is 180. (T 2.4.1) - in class + textbook.
4) The measure of an exterior angle of a triangle equals the sum of the two nonadjacent interior angles. (T 2.4.5) - in class + textbook

Do you know the definitions and theorems we have studied in Chapters 1 and 2?
Have you understood the definitions and theorems rather than memorizing them?
1)

Use the figure to name the geometric figures requested:
a) four lines
b) four line segments
c) eight rays
d) two segments whose intersection is empty.
2) Draw a figure satisfying all the given facts:
a) $\overrightarrow{A B}, \overrightarrow{A C}$, and $\overrightarrow{C D}$ such that $\overrightarrow{A B} \cap \overrightarrow{A C}=\{A\}$, and $\overrightarrow{C D} \cap \overrightarrow{A B}$ such that $\mathrm{A}-\mathrm{B}-\mathrm{D}$.
b) $\overline{E J}, \overline{J S}, \overline{E S}$, and $\overrightarrow{K C}$ such that $\overline{E J} \cap \overrightarrow{K C}=\varnothing, \overrightarrow{J S} \cap \overrightarrow{K C}=\varnothing$, and $\overline{E S} \cap \overrightarrow{K C} \neq \varnothing$.
3) Answer true or false:
a) $E J$ represents the length of $\overline{E J}$.
b) If $E J=J S$, then $\overline{E J} \cong \overline{J S}$.
c) If $\overline{A B} \cong \overline{C D}$, then $A B=C D$.
d) If $E J>J S$, then $\overline{E J} \cong \overline{J S}$.
e) If $\overline{T J} \cong \overline{K R}$, then $T J$ could be less than $K R$.
f) Given any $\overline{A B}$ and any $\overrightarrow{L M}$, there exists a unique point P on $\overrightarrow{L M}$ such that $\overline{L P} \cong \overrightarrow{A B}$.
4)

5) Rearrange the following statements into a proper order leading from the hypothesis to the conclusions:
a) $E S=C K$
b) $K M=C S$
c) $E S=C S$
d) $\overline{C K} \cong \overline{K M}$
e) $\overline{E S} \cong \overline{C K}$
f) $C K=K M$
g) $\overline{E S} \cong \overline{C S}$
h) $\overline{K M} \cong \overline{C S}$
6)

Given $\begin{aligned} & A-D-G \quad \text { (formal proof) } \\ & B-E-H \\ & C-F-I \\ & \overline{D G} \cong \overline{E H} \\ & \overline{B E} \cong \overline{C F} \\ & \overline{E H} \cong \overline{F I} \\ & \overline{A D} \cong \overline{B E}\end{aligned}$
Prove $\overline{A G} \cong \overline{C I}$

Given the figure, name:
a) three acute angles
b) Two right angles
c) One obtuse angle
d) One straight angle
e) Two complementary angles
f) Two supplementary angles
g) Two adjacent angles
h) Two nonadjacent angles
i) Two opposite rays
j) Three noncollinear points.

Given the figure as marked, answer
True or False:
a) $\angle E J K$ is a right angle.
b) $\angle L K N$ and $\angle P S M$ are vertical angles.
c) $\angle L K N$ is supplementary to $\angle N K R$.
d) $\angle J S R$ is complementary to $\angle R S M$.
e) $\angle L K E \cong \angle K R S$
f) $\angle E K J$ is complementary to $\angle K E J$
g) $\angle E K J$ is adjacent to $\angle J K R$.
9)

Use the figure to answer true or false.
Given $\overleftrightarrow{R S} \perp \overleftrightarrow{E M}$

$$
m \angle T O E=m \angle J O E=30^{\circ}
$$

a) $\angle M O S$ is a right angle
b) $\angle J O E \cong \angle M O C$
c) $\angle E O R=\angle E O T+\angle T O R$
d) $\angle R O C$ and $\angle K O S$ are vertical angles.
10)

11)

Given $\overrightarrow{J K} \perp \overrightarrow{S M}$
 $m \angle E J K=118^{\circ}$

Find angles 1 through 5 (justify your steps)

Use the figure to answer
a) Name four acute triangles
b) Name four obtuse triangles.
c) Name one right triangle.
d) Name one isosceles triangles.
e) Name one equilateral triangle.

