Circles Sections 6.1 & 6.2

The many practical uses of the circle range from the wheel to the near-circular orbits of some communication satellites. The mechanical uses of the circle have been known for thousands of years, and the ancient Greeks contributed significantly to our understanding of the circle's mathematical properties. The full moon, ripples in a pond when a stone is dropped in, and the shape of some bird's nests show some of the circles that appear in nature.

Our study of circles begins with some definitions, an explanation of the standard symbols used, and certain figures related to circles.

Definition	A circle is the set of all points in a plane that are at a given distance from a given point in the plane.		
	The given distance =		
	The given point =		
	Notation:		
Note:	A circle divides the plane into three distinct subsets:		
	- the interior B		
	- the circle itself		
	- the exterior		
Note:	The radius of a circle is defined above as a number. It is standard practice, however, for "radius" to also mean a line segment, as in the following definition. You can usually determine which meaning of the word "radius" is intended by the context in which it is used.		
<u>Definition</u>	A radius of a circle is a segment that joins the center of the circle to a point on the circle.		
Definition	A diameter of a circle is a segment whose endpoints are points of the circle and it contains the center of the circle.		
Theorem	In any given circle all radii are congruent and all diameters are congruent. $(\text{radii} \odot \cong \text{ and diams } \odot \cong)$		
<u>Definition</u>	Two or more circles are congruent if($\bigcirc s \cong \text{iff radii } \cong $).		

<u>Definition</u>	Two or more coplanar circles are concentric if
Question:	How many circles can share the same center?
<u>Definition</u>	A line segment is a chord of a circle if its endpoints are points of the circle.
Questions:	1) Is a diameter a chord?
	2) Is a radius of chord?
	3) What is the longest possible chord?
	4) How is the length of a chord related to its distance from the center?
Definition Definition	A line (or segment or ray) is a secant if it intersects a circle at exactly twp points. A line is a tangent to a circle if it intersects the circle at exactly one point.
Definition	At time is a tangent to a circle if it intersects the circle at exactly one point.
Problem #1	In the given figure, name:
	a) fours radii
F₹	b) two diameters
A	c) three chords
G/	d) two tangents
€ J	$s \kappa$ e) one secant
Several types of fundamental of	of angles associated with circles are seen in the above figure. The next definition describes the most sthese angles.
Definition	An angle is a central angle of a circle if
	A central angle may be - acute

- obtuse (measure less than 180°) _____

- right

These angles "cut off" portions of the circle called arcs.

/		E
K		
s		
3 \		⊁′ .l

Definition

A minor arc is the set of points of a circle that are on a

central angle or in its ______.

Example:

Definition

The intercepted arc of an angle is the minor arc associated

with the central angle.

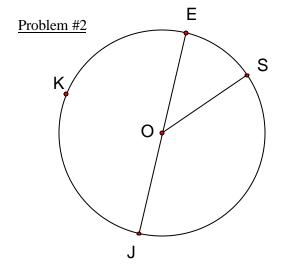
Example: What is the intercepted arc of $\angle SOJ$?

Т	_ C*	4 .	·
D	efir	nti	or

A major arc is the set of points of a circle that are on a central angle or in its ______.

Example:	
Example.	

Definition


A semicircle is the set of points of a circle that are on, or are on one side of, a line containing a

Example:			

Definition

The degree measure of

- a) a minor arc is the measure of its central angle (also known as **The Central Angle Postulate**),
- b) a semicircle is 180°,
- c) a circle is 360°,
- d) a major arc is 360° minus the measure of its associated minor arc.

Given: $\bigcirc O$

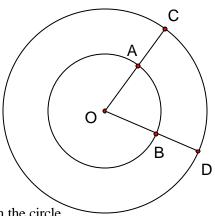
 $m \angle EOS = 41^{\circ}$

Find: $m\widehat{ES}$

 \widehat{mESJ}

m∠SOJ

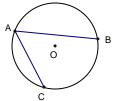
 $m\widehat{SJ}$ _____


mÊKS ____

Note: The degree measure of an arc is not a measure of the arc's length.

For the concentric circles in the figure,

 $\widehat{mAB} = \widehat{mCD}$ because the arcs have the same central angle,


but certainly \widehat{AB} is not as long as \widehat{CD} .

Definition

An angle is an **inscribed angle** of a circle if its vertex is a point on the circle

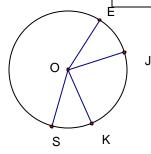
and its sides are chords of the circle.

Central Angles, Arcs, and Chords

There are some important properties about central angles, arcs, and chords that are associated with a given circle or with two circles that are the same size. But what is meant by "the same size"?

<u>Definition</u> Two **arcs** of a circle or of congruent circles are congruent iff their degree measures are equal.

Note:


Since congruent arcs are defined in terms of numbers (degree measures), the addition, subtraction, multiplication, and division properties of congruence may be easily extended to include congruence between arcs.

Theorems relating central angles, arcs, and chords in the same or congruent circles

Theorem 1

(6.1 - T 6.1.3)

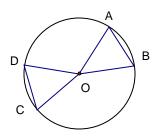
If two minor arcs of a circle or of congruent circles are congruent, then their central angles are congruent (if s = c), central z = c).

Converse 1

(Converse of Theorem 1)

(6.1 - T 6.1.4)

(if central $\angle s \cong , \hat{s} \cong$)


Theorem 2

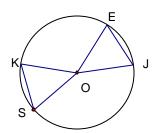
If two central angles in a circle or in congruent circles are congruent, then their chords are

(if central $\angle s \cong$, chords \cong).

Write a formal proof.

Converse 2 (Converse of Theorem 2)

(if chords \cong , central $\angle s \cong$).

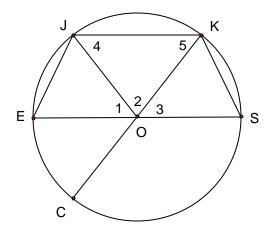

Theorem 3

(6.1 - T 6.1.5)

If two chords in a circle or in congruent circles are congruent, then their arcs are _____ (if chords \cong , $s \cong$).

Write a formal proof.

<u>Converse 3</u> (Converse of Theorem 3)

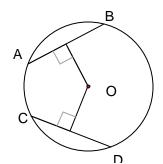

 $\overline{(6.1 - \text{T. } 6.1.6)}$

(if $s \cong$, chords \cong).

The above six theorems are summarized in the following diagram:

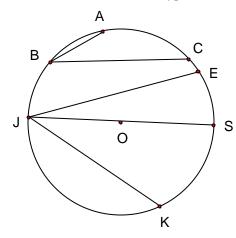
 \cong central angles \leftrightarrow \cong arcs \leftrightarrow \cong chords.

Problem 4


Given: $\bigcirc O$ Find:

 $\overline{ES} \parallel \overline{JK}$ $m\widehat{JK} = 78^{\circ}$

JE = 1.5 cm

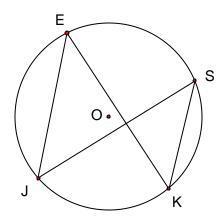

a) $\angle s1-5$ b) \widehat{mJE} , \widehat{mKS} , KS, \widehat{mJC}

Theorem 4 (6.1 – T. 6.1.7 and T. 6.1.8) Chords are at the same distance from the center of a circle if and only if they are congruent.

Inscribed Angles

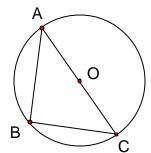
There are three different types of inscribed angles when considered in relation to the center of the circle.

- 1) One side of the angle may contain a diameter, as do _____
- 2) The circle's center may be in the angle's interior as is the case for _____
- 3) The center may be in the angle's exterior as it is for _____


Theorem 1 (6.1 – T 6.1.2)

The measure of an inscribed angle is equal to one-half the degree measure of its intercepted arc. (inscr $\angle = \frac{1}{2}$)

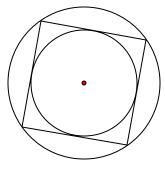
Example:


Theorem 2 (6.1 – T 6.1.10)

If two inscribed angles in a circle intercept the same arc or congruent arcs, then the angles are congruent (inscr $\angle s$ intercept same or \cong s are \cong).

Theorem 3 (6.1 – T 6.1.9)

If an inscribed angle intercepts a semicircle, then it is a _____ angle (inscr \angle interc semi \odot is rt \angle).

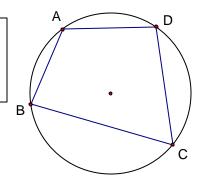


Polygons inscribed in a circle

Definition

Any **polygon is inscribed in a circle** if and only if all its vertices are points of the circle; the **circle is** said to be **circumscribed about the polygon**.

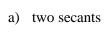
Also, a **circle is inscribed in a polygon** if and only if it is tangent to each of the polygon's sides.

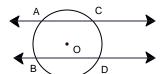


Example:

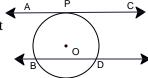
- the square is inscribed in the _____
- the larger circle is ______ about the square.
- the ______ is inscribed in the square.

Theorem (6.2 – T 6.2.1)

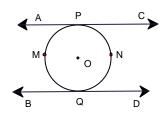

If a quadrilateral is inscribed in a circle, then its opposite angles are _____ (if quad inscr in \bigcirc , opp \angle s supp).



Theorem

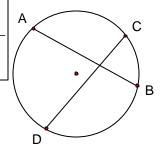

(6.2 – T 6.2.8)

If two parallel lines intersect a circle, then the arcs of the circle between the parallel lines are congruent (if || lines intersect \odot , $s \cong$).



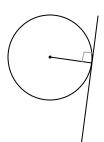
b) secant and tangent

c) two tangents

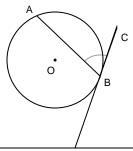


Chords, Tangents, and Secants

Theorem 1 (6.2 – T 6.2.2)


The measure of an angle formed by two chords that intersect within a circle is

 $(2 \text{ chords } \angle = \frac{1}{2} \text{ sum } (s).$


Theorem 2 (6.2 – T 6.2.3)

If a line is tangent to a circle, then it is perpendicular to the radius drawn to the point of contact (tan \perp rad to point contact).

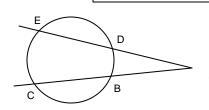
Corollary (6.2 – T 6.2.4)

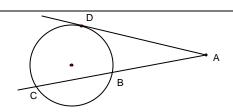
The measure of an angle formed by a tangent to a circle and a chord drawn to the point of tangency is on-half the measure of its intercepted arc.

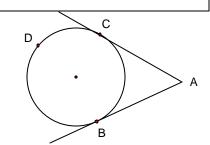
Theorem 3

(6.2 – T 6.2.5, T 6.2.6, T 6.2.7) If an angle is formed by

- two secants

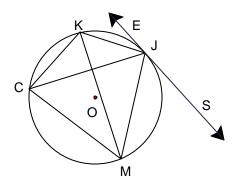

or


- a tangent and a secant


or

two tangents

intersecting in the exterior of the circle, then the measure of the angle is _____

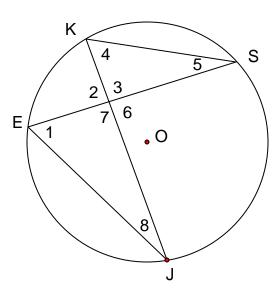


<u>Problem 5</u> Use the figure to answer the questions.

Given
$$\bigcirc O$$
 tan \overrightarrow{ES}

- a) Name two angles congruent to $\angle KJE$.
- b) Name two angles congruent to $\angle JCM$.
- c) Name three angles supplementary to $\angle KJS$.
- d) Name one angle supplementary to $\angle KCM$.

Problem 6


Given $\odot O$

$$m\widehat{EJ} = 88^{\circ}$$

$$m\widehat{KS} = 74^{\circ}$$

$$m\angle 8 = \frac{1}{3}m\angle 2$$

Find $m \angle 1 - 8$

