3.5 Inequalities in a Triangle

There are several important order relations involving the measures of the sides and angles of a triangle.
Definition If $a, b \in \mathbb{R}$, then $a>b$ if and only if there is $p>0$ such that $a=b+p$.

Properties of Inequalities

(A 3)
Addition: If $a<b$, then $a+c<b+c$ for any c.
Subtraction: If $a<b$, then $a-c<b-c$ for any c.
Multiplication: If $a<b$, then $a \cdot c<b \cdot c$ for any $c>0$.

$$
a \cdot c>b \cdot c \text { for any } c<0
$$

Division: If $a<b$, then $\frac{a}{c}<\frac{b}{c}$ for any $c>0$.

$$
\frac{a}{c}>\frac{b}{c} \text { for any } c<0 .
$$

The Transitive Property of Inequality (Order)
If $a, b, c \in \mathbb{R}$ and if $a<b$ and $b<c$, then $a<c$

Lemma 1 (3.5 - L 3.5.1)

The measure of a line segment is greater than the measure of any of its parts.

Lemma 2 The measure of an angle is greater than the measure of any of its parts. (3.5 - L 3.5.2)

Lemma 3 The measure of an exterior angle of a triangle is greater than the measure of either nonadjacent

Theorem1 \quad If the lengths of two sides of a triangle are unequal, then the measures of the angles opposite them are unequal and the larger angle is opposite the longer side.
($2 \operatorname{sides} \Delta \neq$, opp $\angle ' s \neq$ same order)

Note: The relationship described in the above theorem extends to all sides and all angles of a triangle. That is, the largest of the three angles of a triangle is opposite the longest side, and the smallest angle is opposite the shortest side.

The converse of Theorem 1 is ako true.
Theorem 2 If the measures of two angles of a triangle are unequal, then the lengths of the sides opposite them (3.5-T 3.5.7) are unequal and the longer side is opposite the larger angle.
($2 \angle ' s \Delta \neq$, opp sides \neq same order)

Corollary 1 (3.5-C 3.5.8)

The perpendicular segment from a point to a line is the shortest segment that can be drawn from the point to the line.

Corollary 2 The perpendicular segment from a point to a plane is the shortest segment that can be drawn from (3.5-C 3.5.9) the point to the plane.

(3.5 - T 3.5.1 $)$ The sum of the lengths of any two sides of a triangle is greater than the length of the third side.

Problem \#1 Write the theorem that justifies each statement. Refer to the given figure.
a) $m \angle 7>m \angle 5$
b) $m \angle 4>m \angle 6$
\qquad
\qquad

c) If $L H<T L$, then $m \angle 3<m \angle 4$ \qquad
d) If $m \angle 6>m \angle 3$, then $T L>L A$. \qquad
e) $L A+T A>T L$

Write the theorem that justifies each statement. Refer to the given figure.
a) $\overline{L E} \backslash \overline{C U}$
b) $\overline{L C} \backslash \overline{E U}$ \qquad

c) $L E>L C$
d) $E U+U C>E C$ \qquad
e) $L E<L C+E C$ \qquad
f) $E U<U C$
g) $m \angle E U I<m \angle E C U$

Problem \#3 Is it possible to draw a triangle whose sides measure:
a) 8,9 , and 10 in ?
b) 8,9 , and 17 m ?
c) 8,9 , and 18 ft ?

Problem \#4 Given a quadrilateral ABCD with $\overline{A B} \cong \overline{D E}$, show that $D C>A B$. (3.5-\#24)

Problem \#5
a) The sides of a triangle have lengths of 4,6 , and x. Write an inequality that states the possible (3.5-\#27, \#29) values of x.
b) If the lengths of two sides of a triangle are represented by $2 x+5$ and $3 x+7$ (in which x is positive), describe in terms of x the possible lengths of the third side whose length is represented by y .

