3.1 & 3.2 Congruent Triangles Applications

Definition Two triangles are congruent if and only if there is a one-to-one correspondence between their vertices such that three pairs of corresponding sides are congruent and the three pairs of corresponding angles are congruent.

Properties of congruent triangles

- 1. Reflexive Property $\triangle ABC \cong \triangle ABC$ 2. Symmetric Property If $\triangle ABC \cong \triangle MNP$, then $\triangle MNP \cong \triangle ABC$. 3. Transitive Property If $\triangle ABC \cong \triangle MNP$ and $\triangle MNP \cong \triangle ABC$.
 - 3. Transitive Property If $\triangle ABC \cong \triangle MNP$ and $\triangle MNP \cong \triangle QWS$, then $\triangle ABC \cong \triangle QWS$.

Postulates

If the three sides of one triangle are congruent with the three sides of a second triangle, then the triangles are congruent.

If two sides and the included angle of one triangle are congruent to two sides and the included angle of a second triangle, then the triangles are congruent.

If two angles and the included side of one triangle are congruent to two angles and the included side of a second triangle, then the triangles are congruent. <u>Construction 1</u> (3.1 - Example 1) Construct a triangle whose sides have the given lengths.

<u>Problem #1</u> Given an isosceles triangle *ABC* with base \overline{BC} and *M* the midpoint of the base, show that $\triangle ABM \cong \triangle ACM$.

If $\angle R$ and $\angle V$ are right angles and $\angle 1 \cong \angle 2$, prove that $\triangle RST \cong \triangle VST$.

Problem #6	In a right triangle FDG with right angle D, the bisector of angle D intersects the
(3.2 - #24)	hypotenuse at E . The acute angles of the triangle are congruent. Prove that E is the
	midpoint of the hypotenuse.

The Pythagorean Theorem

In any right triangle, the square of the hypotenuse is equal to the sum of the squares of the legs.

Note that the <u>converse of the Pythagorean theorem is also true</u>; that is, if the lengths *a*, *b*, and *c* of the three sides of a triangle are such that $a^2 + b^2 = c^2$, then the triangle is a right triangle with its right angle opposite side *c*.

Problem #8

a) In a right triangle the hypotenuse is 13 in and one leg is 12 in. Find the other leg.b) In a right triangle, one leg is 8cm and the other one is 15 cm. Find the hypotenuse.

en
$$\angle 3 \cong \angle 1$$

 $\angle 4 \cong \angle 2$
 $\triangle EAL$ isosceles (\overline{EA} base)

rove
$$\overline{TA} \cong \overline{HE}$$