TEST 2 @ 140 points

Show your work for credit. Write all responses on separate paper. Please write only on one side and clearly label the exercises.

1. Let $y=3 x^{2}+4 x+2$ be the equation of a parabola.
a) What are the coordinates of the vertex?
b) Write the equation in vertex form.
c) What is the domain of the function?
d) What is the range of the function?
e) Graph the above parabola showing how its graph is obtained from the basic parabola $y=x^{2}$.
2. a) Find a polynomial function of least degree with leading coefficient 1 and having only real coefficients knowing that 2 and $1+i$ are zeros of multiplicity one.
b) Write the polynomial function in standard form.
3. Use Descartes' rule of signs to determine the possible number of positive real zeros and negative real zeros for $f(x)=2 x^{5}+5 x^{4}-8 x^{3}-14 x^{2}+6 x+9$.
4. Consider the following polynomial function $f(x)=3 x^{4}-4 x^{3}-22 x^{2}+15 x+18$.

Questions a-g below relate to this polynomial function.
a) Use the leading term to describe the long-term behavior of this function; that is, what happens as $x \rightarrow \pm \infty$.
b) Use synthetic division to divide $f(x)$ by $x-1$ and relate dividend, divisor, quotient and remainder in an equation.
c) Compute and compare the values of $f(1)$ and $f(2)$. What can you conclude using the intermediate value theorem?
d) State why the condition for the theorem on rational zeros is satisfied and use the theorem on rational zeros to list all possible rational zeros for $f(x)$.
e) Find all the zeros of the polynomial.
f) What are the x - and y-intercepts of the graph?
g) Sketch a graph of $f(x)$ showing how it passes through its intercepts.
5. Identify all the asymptotes for the following functions:
a) $f(x)=\frac{8 x^{2}+2 x-10}{2 x^{2}-3 x-5}$
b) $g(x)=\frac{2 x^{2}+5}{x-3}$
6. Consider $f(x)=\frac{3 x}{x^{2}-x-2}$.
a) Factor the denominator.
b) What are the vertical asymptotes?
c) What is the horizontal asymptote?
d) What are the intercepts for this function?
e) Plot additional points, as necessary, to get the shape of this function and sketch a graph.

I MATHIBO
TEST \#2- Lo MTIONS
(1) $y=3 x^{2}+4 x+2$
(a)

$$
\begin{aligned}
& V\left(x_{v}, y_{v}\right) \quad x_{v}=\frac{-b}{2 a}=\frac{-4}{2(3)}=\frac{-2}{3} \\
& y_{v}=3\left(\frac{-2}{3}\right)^{2}+4\left(\frac{-2}{3}\right)+2 \\
& y_{v}=3 \cdot \frac{4}{9}-\frac{8}{3}+2 \\
& y_{v}=\frac{4}{3}-\frac{8}{3}+2 \quad y_{v}=\frac{-4}{3}+2=\frac{2}{3} \\
& \left.V\left(\frac{-2}{3}, \frac{2}{3}\right) \right\rvert\,
\end{aligned}
$$

(b)

$$
\begin{aligned}
& y=a\left(x-x_{v}\right)^{2}+y_{v} \\
& y=3\left(x+\frac{2}{3}\right)^{2}+\frac{2}{3}
\end{aligned}
$$

(c) $x \in \mathbb{R}$
(d) $y=3 x^{2}+4 x+2$ parabla opens upward $讠$ the Vertex $=$ the minimum point

$$
\begin{aligned}
& y \in\left[y_{v}, \infty\right) \\
& y \in\left[\frac{2}{3}, \infty\right)
\end{aligned}
$$

(e) $\quad y=3\left(x+\frac{2}{3}\right)^{2}+\frac{2}{3}$

Ist $y=x^{2} \quad$ basic parobola
and $y=\left(x+\frac{2}{3}\right)^{2}$, shite $y=x^{2}$ to the left $\frac{2}{3}$
3rd $y=3\left(x+\frac{2}{3}\right)^{2}$ stretch $y=\left(x+\frac{2}{3}\right)^{2}$ wertically ly a factor the $y=3\left(x+\frac{2}{3}\right)^{2}+\frac{2}{3}$ dift $y=3\left(x+\frac{2}{3}\right)^{2}$ up $\frac{2}{3}$

(2) a)
$\begin{array}{ll}x=2 \\ x=1+i & \text { 2eno of muetiplicity, }\end{array}$
$x=1+i$ ters of muetiplidyl
$\Rightarrow \quad x=1-i \quad$ is abo a yero of unetiplicity 1 (Conjugotes Theorem)
So,

$$
\left.\begin{array}{c|c}
x-2 & f(x) \\
x-(1+i) & f(x) \\
x-(1-i) & \mid f(x)
\end{array} \right\rvert\,=
$$

$$
\Rightarrow f(x)=(x-2)(x-(1+i))(x-(1+))
$$

b)

$$
\begin{aligned}
& f(x)=(x-2)(x-1-i)(x-1+i) \\
& f(x)=(x-2)((x-1)-i)((x-1)+i) \\
& f(x)=(x-2)\left((x-1)^{2}-i^{2}\right) \\
& f(x)=(x-2)\left(x^{2}-2 x+1+1\right) \\
& f(x)=(x-2)\left(x^{2}-2 x+2\right) \\
& f(x)=x^{3}-4 x^{2}+6 x-4
\end{aligned}
$$

(3) $f(x)=2 x^{5}+\frac{5 x^{4}-8 x^{3}-\frac{14 x^{2}}{2}}{1}+6 x+9$

2 variations in sign in $f(x) \Rightarrow 2$ OR O positive roots

$$
\begin{aligned}
& f(-x)=2(-x)^{5}+5(-x)^{4}-8(-x)^{3}-14(-x)^{2}+6(-x)+9 \\
& f(-x)=\underbrace{-2 x^{5}}_{1}+5 x^{4}+\frac{8 x^{3}}{2}-14 x^{2}-6 x+9
\end{aligned}
$$

3 variatious in sign in $f(-x) \Rightarrow 3$ OR 1 negatice root
(4) $f(x)=3 x^{4}-4 x^{3}-22 x^{2}+15 x+18$
(a) Since the desiree is even oud the leading coefficient is positive, when $\left[\begin{array}{ll}x & \rightarrow-\infty, \\ x & f(x)\end{array} \rightarrow \infty, 1\right.$.
(b)

x	3	-4	-22	15	18
1	3	-1	-23	-8	(10)

$$
f(x)=(x-1)\left(3 x^{3}-x^{2}-23 x-8\right)+10
$$

(c) $f(1)=10 \quad(f(1)=$ remainder when dividing $f(x)$ by $x-1$)
$f(2)=-24 \quad(f(2)=$ remainder when dividing $f(x)$ by $x-2)$

	3	-4	-22	15	18
2	3	2	-18	-21	-24

Since $f(x)$ changes sign on the interval $[1,2]$, there is rome $r \in(1,2)$ such that $f(r)=0$
(d) Since the coefficient if $f(x)$ are dee integers, we may conclude that the rational teres of f are in the set $\pm\left\{1,2,3,6,9,18, \frac{1}{3}, \frac{2}{3}\right\}$

$$
\frac{p}{q}=\frac{\text { factors of } 18}{\text { factor of } 3}= \pm \frac{1,2,3,59,18}{1,3}
$$

(e) $f(x)=3 x^{4}-4 x^{3}-22 x^{2}+15 x+18$

	3	-4	-22	15	18
3	3	5	-7	-6	0
$-\frac{2}{3}$	3	3	-9	0	$f(x)=(x-3)\left(3 x^{3}+5 x^{2}-7 x-6\right)$

$$
\begin{aligned}
& f(x)= 3(x-3)\left(x+\frac{2}{3}\right)\left(x^{2}+x-3\right) \\
& f(x)=(x-3)(3 x+2)\left(x^{2}+x-3\right) \\
& x^{2}+x-3=0 \\
& x_{12}=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}=\frac{-1 \pm \sqrt{1+12}}{2}=\frac{-1 \pm \sqrt{13}}{2} \simeq 1.3 \\
& \simeq-2.3
\end{aligned}
$$

The zeros of f are $\left\{\begin{array}{l}x=3 \\ x=-\frac{2}{3} \\ x=\frac{-1+\sqrt{13}}{2} \\ x=\frac{-1-\sqrt{13}}{2}\end{array}\right.$
(f) The:x-interapts are the zeros of f (the solutions of $f(x)=0$)

Then for, the x-intercepts are

The y-interest: $x=0, f(0)=18$

$$
y-1 \quad(0,18)
$$

(5) $f(x)=\frac{8 x^{2}+2 x-10}{2 x^{2}-3 x-5}$
(a) $f(x)=\frac{8 x^{2}+2 x-10}{(2 x-5)(x+1)}$

Veitical asyuptotes: $\begin{aligned} & x=\frac{5}{2} \\ & x=-1\end{aligned}$
Horizontal asguptote: $y=4 \quad \begin{array}{r}\text { desree numerator }= \\ = \\ =\text { desree devoluin }\end{array}$ = dester cevominator)
(b) $g(x)=\frac{2 x^{2}+5}{x-3}$
vertical asyuptote: $x=3$
No horitutal axgmptote beconse destee numerator $>$ \rightarrow derue denominator

Ablique asymptote

$$
y=2 x+6
$$

$$
x-3 \begin{gathered}
2 x+6 \\
\begin{array}{l}
2 x^{2}+5 \\
-2 x^{2}+6 x \\
\hline 6 x+5 \\
\frac{-6 x+18}{1} 23
\end{array}
\end{gathered}
$$

(6) $f(x)=\frac{3 x}{x^{2}-x-2}$
(a) $f(x)=\frac{3 x}{(x-2)(x+1)}$
(b) The vertical anguptotes ate aloug the lines $\begin{aligned} & x=2 \\ & x=-1\end{aligned}$
(c) The horinutal asymptote is aloug the line $y=0$ (digue unmerator < desrue devominator)
(d) $x-n: \quad y=0 \Leftrightarrow 3 x=0 \Leftrightarrow x=0$

The $x-n$ and $y-n$ is $(0,0)$
(e)

Sehavior near U.A. $x=2 \begin{cases}x \rightarrow 2^{+}, f(x) & \rightarrow \infty \\ \left(\frac{6}{\left(t_{0}\right)(3)}\right. \\ x \rightarrow 2^{-}, & f(x) \rightarrow-\infty\left(\frac{6}{(-0) 3}\right) .\end{cases}$
Rehavior wer V.A. $x=-1\left\{\begin{array}{l}x \rightarrow-1^{+}, f(x) \rightarrow \infty \quad\left(\begin{array}{l}((-3)(+0)\end{array}\right) \\ x \rightarrow-1^{-}, f(x) \rightarrow-\infty\left(\frac{-3}{((-3)(-\infty)}\right)\end{array}\right.$

