Section 4.2 Exponential Functions

Question\#1: Can you find exactly how many grains of rice would be needed on the 64th square and how much total rice would be needed for all 64 squares?

Question \#2: Suppose that your mathematics instructor, in an effort to improve classroom attendance, offers to pay you each day for attending class! Suppose you are to receive 2 cents on the first day you attend class, 4 cents the second day, 8 cents the third day, and so on for 30 days. What would you rather have: $\$ 1$ million dollars or the above offer?

Note: Simple method for quickly estimating powers of two

$$
2^{10} \approx 10^{3}
$$

Review

Complete the following:

1) Write using radical notation:
a) $10^{\frac{4}{5}}$
b) $x^{\frac{3}{7}}$
2) Use exponent notation:
a) $\sqrt[7]{(1+n)^{4}}$
b) $\sqrt[3]{x^{5}}$
3) Simplify :
a) $16^{\frac{1}{2}}$
b) $(-32)^{\frac{1}{5}}$
c) $64^{-\frac{1}{2}}$
4) If $f(x)=3^{x}$, find each of the following:
a) $f(2)$
b) $f(-3)$
5) Solve the following equations:
a) $3^{x}=27$
b) $2^{3 y+1}=\sqrt{2}$
c) $\left(\frac{1}{2}\right)^{k}=4$
$f(x)=a b^{x}$, where $b>0$ and $b \neq 1, a \neq 0$.
$a=$ the coefficient, $b=$ base.
Note: If $b=1$, then $b^{x}=1^{x}=1$ for any x - trivial.
If $b=0$, then $b^{x}=0^{x}$ which is undefined when $x=0$
If $b<0$, let $f(x)=(-2)^{x}$. If $x=\frac{1}{2}, f(x)=(-2)^{\frac{1}{2}}=\sqrt{-2} \notin \mathbb{R}$

Graphs of Exponential Functions

$$
f(x)=2^{x}
$$

$$
g(x)=\left(\frac{1}{2}\right)^{x}
$$

x	$-\infty$	∞
y		

x	$-\infty$	∞
y		

Domain:
Range:
Horizontal Asymptote: \qquad
If $b>1$, the function is increasing.
The function is one-to-one.

Domain:
Range:
Horizontal Asymptote: \qquad
If $0<b<1$, the function is decreasing.
The function is one-to-one.

Question: Which function grows more rapidly: $y=3^{x}$ or $y=4^{x}$?
When $b>1$, the greater the value of b is, the more
Which function decreases more rapidly: $y=(0.5)^{x}$ or $y=(0.8)^{x}$?
When $0<b<1$, the smaller the value of b is, the more \qquad

Exercise \#1 Find the function $f(x)=a^{x}$ whose graph is given.

Exercise \#2 Use the graph of $f(x)=2^{x}$ to obtain the graph of each. Specify the domain, range, asymptote and intercept(s).
a) $g(x)=1+2^{x}$
b) $G(x)=2^{x}-1$

c) $l(x)=2^{x+1}$
d) $\quad L(x)=2^{x-1}$

e) $\quad h(x)=-2^{x}$

Exercise \#3 Solve the following equations:
a) $2^{x^{2}-2 x}=8$
b) $3 x\left(10^{x}\right)+10^{x}=0$
c) $4^{x+2}-4^{x}=15$
d) $x^{3} 2^{x}-3\left(2^{x}\right)=0$

Exercise \#4 Let $f(x)=2^{x}$. Show that $\frac{f(x+h)-f(x)}{h}=2^{x}\left(\frac{2^{h}-1}{h}\right)$

Compound Interest

$$
\begin{aligned}
& A=P\left(1+\frac{r}{n}\right)^{n t} \\
& A=\text { amount in the account after tyears } \\
& P=\text { principal (amount invested) } \\
& r=\text { annual interest rate } \\
& n=\text { number of times interest is compounded per year } \\
& t=\text { number of years }
\end{aligned}
$$

Exercise \#5 Assume we invest \$1000 in an account that pays 6\% interest rate per year.

How much is in the account at the end of one year if
a) interest is compounded once a year?
b) interest is compounded quarterly?

How much interest was paid in one year under the quarterly compounding?

What percentage of $\$ 1000$ does this represent?
\qquad interest paid is \qquad $\%$ of $\$ 1000$.

This is called the effective yield (effective annual rate of interest).
The effective yield of an interest is the simple interest rate that would yield the same amount in 1 year.

The Number e

An interesting situation occurs if we consider the compound interest formula for $P=\$ 1, r=100 \%, t=1$ year.
The formula becomes \qquad .

The following table shows some values, rounded to eight decimal places, of $\left(1+\frac{1}{n}\right)^{n}$

n	$\left(1+\frac{1}{n}\right)^{n}$
1	2.00000000
10	2.5937246
100	2.70481383
1000	2.71692393
10,000	2.71814593
100,000	2.71826824
$1,000,000$	2.71828047
$10,000,000$	2.71828169
$100,000,000$	2.71828181
$1,000,000,000$	2.71828183

a) For a fixed period of time (say one year), does more and more frequent compounding of interest continue to yield greater and greater amounts?
b) Is there a limit on how much money can accumulate in a year when interest is compounded more and more frequently?

The table suggests that as n increases, the value of $\left(1+\frac{1}{n}\right)^{n}$ gets closer and closer to some fixed number. The fixed number is called e. To five decimal places, $e=2.71828$.

When $n \rightarrow \infty,\left(1+\frac{1}{n}\right)^{n} \rightarrow e$ and the formula for
continuously compounded interest is

$$
A=P e^{r t}
$$

Exercise \#6 Assume we invest $\$ 1000$ in an account that pays 6\% interest rate per year compounded continuously.
a) How much is in the account at the end of one year?
b) How much interest was paid in one year under the continuous compounding?
c) What is the effective yield?

Exercise \#7 What investment yields the greater return: 7\% compounded monthly or 6.85% compounded continuously? (Hint: To answer such a question, we need to compare the effective yield of the accounts).

For the 7\% compounded monthly
For the 6.85 compounded continuously

Exercise \#8 The exponential growth of the deer population in Massachusetts can be calculated using the model $T=50,000(1+0.6)^{n}$, where 50,000 is the initial deer population and 0.06 is the rate of growth. T is the total population after n years have passed.
a) Predict the total population after 4 years.
b) If the initial population was 30,000 and the growth rate was 0.12 , approximately how many deer would be present after 3 years?

Exercise \#9 A mobile home loses 20\% of its value every 3 years.
a) A certain mobile home costs $\$ 20,000$. Write a function for its value after t years.
b) How long will it be before a $\$ 20,000$ mobile home depreciates to $\$ 12,800$?

Exercise \#10 a) Complete the table of values.
b) Write a function that describes the exponential growth.
c) Graph the function.
d) Evaluate the function at the given values.

A colony of bacteria starts with 300 organisms and doubles every week. How many bacteria will there be after 8 weeks?
After 5 days?

Weeks	0	1	2	3	4
Bacteria					

