3.5 Graphs of Rational Functions

Example 1 Graph the reciprocal function $f(x)=\frac{1}{x}$ Answer the following questions:
a) What is the domain of the function?
\qquad
b) What is the range of the function? \qquad
c) What are the x-and y-intercepts? \qquad
d) What is the end- behavior of the function, that is, what happens with the values of y as x goes to ∞ and $-\infty$?
e) What is the behavior of the function when x approaches 0 ?

x	

Definition

Notations: $\quad x \rightarrow \infty \quad x$ approaches infinity (x increases without bound)
$x \rightarrow-\infty \quad x$ approaches negative infinity (x decreases without bound)
$x \rightarrow a^{+} \quad x$ approaches a from the right
$x \rightarrow a^{-} \quad x$ approaches a from the left

Definition
The line $x=a$ is a vertical asymptote for the graph of $f(x)$ if, when $\quad x \rightarrow a, y \rightarrow \pm \infty$.
The line $y=b$ is a horizontal asymptote for the graph of $f(x)$ if, when $x \rightarrow \pm \infty, y \rightarrow b$.

Exercise \#1 Identify all the vertical and horizontal asymptotes of the following graphs.
How can the vertical asymptotes be found? What about the horizontal asymptotes?
a)

$$
f(x)=\frac{2 x+1}{x-3}
$$

b)

$$
f(x)=\frac{x}{(x+1)(x-2)}
$$

c)

$$
f(x)=\frac{x^{2}+1}{x-2}
$$

Asymptotes for a rational function $f(x)=\frac{p(x)}{q(x)}=\frac{a_{n} x^{n}+\ldots+a_{0}}{b_{m} x^{m}+\ldots b_{0}}$

1. The vertical asymptotes are the lines $x=c$, where c is a zero of the denominator.
2. If $n<m$, then $y=0$ (the x -axis) is the horizontal asymptote.

If $n=m$, then $y=\frac{a_{n}}{b_{n}}$ is the horizontal asymptote.
If $n>m$, there are no horizontal asymptotes.
If, however, $n=m+1$, then there is an oblique asymptote . Divide the numerator by the denominator and disregard the remainder.

$$
y=\text { quotient is the oblique asymptote }
$$

Exercise \#2 Identify all the asymptotes for the following functions:

$f(x)=\frac{2 x+7}{x-5} |$| | $g(x)=\frac{4 x^{2}+x-5}{2 x^{2}-3 x-5}$ |
| :--- | :--- |
| | |
| | |

Exercise \#3 Graph the function $f(x)=\frac{1}{x^{2}}$. Find the domain, the asymptotes, and the x-and y-intercepts. | | |
| :--- | :--- |
| | |

Exercise \#4 Show how to obtain the graph of $g(x)=\frac{1}{(x+1)^{2}}+1$ from the graph of $f(x)=\frac{1}{x^{2}}$. What are the asymptotes of $g(x)$?

Exercise \#5 Sketch the graph of $f(x)=\frac{x+1}{x-4}$. Find the domain, all the asymptotes, the x - and y-intercepts Determine if the graph intersects its nonvertical asymptote. Plot additional test points, as needed.

Exercise \#6 Sketch the graph of $f(x)=\frac{x-2}{x^{2}-1}$. Find the domain, all the asymptotes, the x - and y-intercepts Determine if the graph intersects its nonvertical asymptote. Plot additional test points, as needed.

Exercise \#7 Sketch the graph of $f(x)=\frac{x^{2}-2 x-8}{x^{2}-4 x+3}$. Find the domain, all the asymptotes, the x - and y intercepts Determine if the graph intersects its nonvertical asymptote. Plot additional test points, as needed.

Exercise \#8 Sketch the graph of $f(x)=\frac{x^{2}+1}{x+3}$. Find the domain, all the asymptotes, the x - and y-intercepts Determine if the graph intersects its nonvertical asymptote. Plot additional test points, as needed.

Exercise \#9 Graph the following functions: $f(x)=\frac{x+2}{x+2}$ and $g(x)=\frac{x^{2}-9}{x+3}$.

