3.5 Graphs of Rational Functions

<u>Definition</u> A rational function is a function f of the form $f(x) = \frac{p(x)}{q(x)}$, where p(x) and q(x) are polynomials, with $q(x) \neq 0$.

Notations:	$x \rightarrow \infty$	<i>x</i> approaches infinity (x increases without bound)
	$x \rightarrow -\infty$	<i>x</i> approaches negative infinity (<i>x</i> decreases without bound)
	$x \rightarrow a^+$	x approaches a from the right
	$x \rightarrow a^{-}$	<i>x</i> approaches a from the left

Definition The line x = a is a **vertical asymptote** for the graph of f(x) if, when $x \to a$, $y \to \pm \infty$. The line y = b is a **horizontal asymptote** for the graph of f(x) if, when $x \to \pm \infty$, $y \to b$.

Asymptotes for a rational function $f(x) = \frac{p(x)}{q(x)} = \frac{a_n x^n + \dots + a_0}{b_m x^m + \dots + b_0}$

1. The vertical asymptotes are the lines x = c, where c is a zero of the denominator.

2. If n < m, then y = 0 (the x-axis) is the **horizontal asymptote.**

If n = m, then $y = \frac{a_n}{b_n}$ is the **horizontal asymptote.**

If n > m, there are **no horizontal asymptotes.**

If, however, n = m+1, then there is an oblique asymptote. Divide the numerator by the denominator and disregard the remainder.

y = quotient is the oblique asymptote

Exercise #2 Identify all the asymptotes for the following functions:

$$f(x) = \frac{2x+7}{x-5} \qquad g(x) = \frac{4x^2 + x-5}{2x^2 - 3x-5} \qquad h(x) = \frac{x^2 + 6}{x-3} \qquad l(x) = \frac{1}{2x^2 - 2}$$

Exercise #4 Show how to obtain the graph of $g(x) = \frac{1}{(x+1)^2} + 1$ from the graph of $f(x) = \frac{1}{x^2}$. What are the asymptotes of g(x)?

Exercise #5 Sketch the graph of $f(x) = \frac{x+1}{x-4}$. Find the domain, all the asymptotes, the *x*- and *y*-intercepts Determine if the graph intersects its nonvertical asymptote. Plot additional test points, as needed.

Exercise #6 Sketch the graph of $f(x) = \frac{x-2}{x^2-1}$. Find the domain, all the asymptotes, the *x*- and *y*-intercepts Determine if the graph intersects its nonvertical asymptote. Plot additional test points, as needed.

Exercise #7 Sketch the graph of $f(x) = \frac{x^2 - 2x - 8}{x^2 - 4x + 3}$. Find the domain, all the asymptotes, the *x*- and *y*-intercepts Determine if the graph intersects its nonvertical asymptote. Plot additional test points, as needed.

Exercise #8 Sketch the graph of $f(x) = \frac{x^2 + 1}{x + 3}$. Find the domain, all the asymptotes, the *x*- and *y*-intercepts Determine if the graph intersects its nonvertical asymptote. Plot additional test points, as needed.

