Sections 4.1 \& 4.2
 Sets. Operations with Sets . Linear Inequalities in One Variable

Example\#1 Let A and B be two sets of elements: $A=\{a, b, c\}, \quad B=\{a, b, c, d\}$
$a \in A$ because a is an element of A
$d \notin A$ because d is not an element of A.
$\{a, b, c\}=\{b, a, c\}$

Definition $\quad A \subset B \quad \mathbf{A}$ is included in \mathbf{B} if any element of A is also in B.
Example \#2 $\{a, b, c\} \subset\{a, b, c, d\}$
$\{1,2,3\} \not \subset\{1,2\}$

Operations with sets
$\cup-$ 'union" $\quad A \bigcup B=\{x \mid x \in A$ or $x \in B\}$
Examples:
\cap - "intersection" $A \cap B=\{x \mid x \in A$ and $x \in B\}$
Examples:

The Empty Set \varnothing - the set with no elements

Definition A number \boldsymbol{a} is less than a number $\boldsymbol{b}(a<b)$ if a is to the left of b on the number line.
Exercise \#1 Write equivalent statements:
a) $2 \leq 3$ \qquad
b) $2>y$
c) $5>x \geq-2$
d) $-4<-2$

Intervals of real numbers

$$
[a, b]=\{x \mid a \leq x \leq b\}
$$

$$
(a, b)=\{x \mid a<x<b\}
$$

$$
[a, \infty)=\{x \mid x \geq a\}
$$

$$
(a, \infty)=\{x \mid x>a\}
$$

$$
(-\infty, a]=\{x \mid x \leq a\}
$$

$$
(-\infty, a)=\{x \mid x<a\}
$$

Exercise \#2 Do the following operations and graph the solution set:
a) $[-2,5] \cup[-3,1]$
b) $[-2,5] \cap[-3,1]$
d) $(-\infty, 2) \cup[0, \infty)$
e) $(-4,-1) \cap(-1,2)$
c) $(1, \infty) \cap(-3,4)$

Exercise \#3 Graph the following sets and express them using interval notation:
a) $\{x \mid x \leq-2\}$
b) $\{x \mid 2<x \leq 3\}$
c) $\{x \mid-3 \geq x \geq-7\}$

Properties of Inequalities

If $a<b$, then $\left\{\begin{array}{l}a+c<b+c \\ a-c<b-c\end{array}\right.$ for any c.

If $a<b$, then $\left\{\begin{array}{l}a c<b c \\ \frac{a}{c}<\frac{b}{c}\end{array}\right.$ for any positive c.
If $a<b$, then $\left\{\begin{array}{l}a c>b c \\ \frac{a}{c}>\frac{b}{c}\end{array}\right.$ for any negative c.

Exercise \#4 (i) Solve each inequality.
(ii) Graph the solution set.
(iii) Write each solution set in interval notation.
(iv) Write each solution set using set notation.
a) $1+x \leq-2$
b) $2<-3 t$
c) $2\left(y+\frac{3}{2}\right) \leq 2 y+\frac{1}{7}$
d) $\frac{1}{2}(a+8)-\frac{a}{4}>\frac{a}{4}$
e) $-2<x+1 \leq 5$
f) $-2<-t+3<5$
g) $15>2 y-7 \geq 1$
h) $4(a-1) \geq 3(a-2)+a$
i) $-6 \leq-3(x-4) \leq 24$
j) $\frac{-(t-3)}{2}+2<\frac{3}{4}(2 t-5)$
k) $\frac{x-4}{6} \geq \frac{x-2}{9}+\frac{5}{18}$

1) $-3 \leq \frac{2 x}{3}-5<-1$

Exercise \#5 (i) Solve each inequality.
(ii) Graph the solution set.
(iii) Write each solution set in interval notation.
(iv) Write each solution set using set notation.
a) $x<-3$ or $x>3$
b) $x<-3$ and $x>3$
c) $3 x<3$ or $2 x>10$
d) $3 x<3$ and $2 x>10$
e) $4 x+3<-1$ or $2 x-3 \geq-11$
f) $4 x+3<-1$ and $2 x-3 \geq-11$

Exercise \#6
A city commission has proposed two tax bills. The first bill requires that a homeowner pay $\$ 1800$ plus 3% of the assessed home value in taxes. The second bill requires taxes of $\$ 200$ plus 8% of the assessed home value. What price range of home assessment would make the first bill a better deal for the homeowner?

Exercise \#7 A company manufactures and sells personalized stationery. The weekly fixed cost is $\$ 3000$ and it costs $\$ 3.00$ to produce each package of stationary. The selling price is $\$ 5.50$ per package. How many packages of stationary must be produced and sold each week for the company to have a profit?

