Highlights Factoring Polynomials

The Greatest Common Factor	
Factoring = writing an expression as a product	Factor 12: $12 = 6 \cdot 2$
Prime factorization = writing an expression as a product of prime factors	The prime factorization of 12: $12 = 2^2 \cdot 3$
The Greatest Common Factor (GCF) of a list of terms = The GCF of numerical coefficients • The GCF of the variable factors use prime factorization • The GCF of the variable factors contains the smallest exponent on each common variable To factor out the GCF: • • Find the GCF of the terms • Use the distributive property	Find the GCF of $8x^2y$, $12x^3y^2$, and $60x^2y^3$ $8x^2y = 2^3 \cdot x^2y$ $12x^3y^2 = 2^2 \cdot 3 \cdot x^3y^2$ $60x^2y^3 = 2^2 \cdot 3 \cdot 5 \cdot x^2y^3$ GCF = $2^2 \cdot x^2y = 4x^2y$ Factor: $8x + 20 = 4(2x + 5)$ $8x = 2^3 \cdot x$ $20 = 2^2 \cdot 5$ <i>GCF</i> = $2^2 = 4$ Factor: $7(\underline{x+2}) + \underline{y(x+2)} = (x+2)(7+y)$ <i>GCF</i> = $x+2$
To factor by grouping:	Factor: $10x^2 + 15x - 6xy - 9y =$
 Step 1: Group the terms into two groups of two terms. Step 2: Factor out the GCF from each group. Step 3: If there is a common factor, factor it out. Step 4: If not, rearrange the terms and try Steps 1-3 again. 	Step 1: $(10x^{2} + 15x) - (6xy + 9y) =$ Step 2: $5x(2x + 3) - 3y(2x + 3) =$ Step 3: $(2x + 3)(5x - 3y)$

Special products. Factoring Square Trinomials and the Difference of Two Squares

A perfect square = a positive integer that is the square of a natural number. This concept of perfect squares extends to algebraic expressions.

A perfect square trinomial = a trinomial that is the square of some binomial.

Squaring a binomial: *Reverse the concept:* Factoring Perfect Square Trinomials

$$(a+b)^{2} = a^{2} + 2ab + b^{2} \qquad a^{2} + 2ab + b^{2} = (a+b)^{2}$$
$$(a-b)^{2} = a^{2} - 2ab + b^{2} \qquad a^{2} - 2ab + b^{2} = (a-b)^{2}$$

Difference of squares and cubes; Sum of cubes

$$(a-b)(a+b) = a^{2} - b^{2} \qquad a^{2} - b^{2} = (a-b)(a+b)$$

$$(a-b)(a^{2}+ab+b^{2}) = a^{3} - b^{3} \qquad a^{3} - b^{3} = (a-b)(a^{2}+ab+b^{2})$$

$$(a+b)(a^{2}-ab+b^{2}) = a^{3} + b^{3} \qquad a^{3} + b^{3} = (a+b)(a^{2}-ab+b^{2})$$

To recognize a perfect square trinomial:

Step1: See if there are two terms that are perfect squares: a^2 , b^2 ٠

If no perfect squares, then the trinomial is not a perfect square.

Step 2: See if the third term can be written as twice the product of a and b: 2ab ٠

Perfect squares: $1 = 1^2$, $4 = 2^2$, $9 = 3^2$, $16 = 4^2$,...

Square each binomial:

$$(x+6)^{2} = x^{2} + 2 \cdot x \cdot 6 + 6^{2} = x^{2} + 12x + 36$$
$$(2x-3)^{2} = (2x)^{2} - 2 \cdot (2x) \cdot 3 + 3^{2} =$$
$$= 4x^{2} - 12x + 9$$

Multiply:

$$(7-x)(7+x) = 7^{2} - x^{2} = 49 - x^{2}$$
$$(2x-1)(2x+1) = (2x)^{2} - 1^{2} = 4x^{2} - 1$$

Factor: $x^{2} + 6x + 9 = x^{2} + 2 \cdot x \cdot 3 + 3^{2} = (x + 3)^{2}$ Step 1: x^2 and 9 are perfect squares. Step 2: $6x = 2 \cdot x \cdot 3$

Factor:

$$4x^{2} - 12x + 9 = (2x)^{2} - 2 \cdot (2x) \cdot 3 + 3^{2}$$
$$= (2x - 3)^{2}$$

Factor: $x^{2} - 25 = x^{2} - 5^{2} = (x - 5)(x + 5)$

Factoring Trinomials of the Form
$$Ax^2 + Bx + C$$
Step1: Are there any common factors? If so, factor out the GCF.• Step2: Can you recognize any special products?
Two terms: Is it the difference of two squares?
 $a^2 - b^2 = (a - b)(a + b)$
Is it a sum or difference of two cubes?
 $a^2 - b^2 = (a - b)(a^2 + ab + b^2)$
 $a^3 + b^3 = (a + b)(a^2 - ab + b^2)$
 $a^3 + b^3 = (a + b)(a^2 - ab + b^2)$
Three terms: Is it a perfect square trinomial?
 $a^2 + 2ab + b^2 = (a + b)^2$
 $a^2 - 2ab + b^2 = (a - b)^2$ Factor: $x^2 + 12x + 20$
Step3 - the coefficient of x^2 is 1.
 $x^2 + 12x + 20 = (x + ?)(x + ?) = (x + 2)(x + 10)$
 $a = b + 2$
 $ab = 20 \checkmark +10$ • Step3: Factor using the method that applies, according to the coefficient of x^2
is 1. $x^2 + Bx + C = (x + ?)(x + ?)$
 $x^2 + Bx + C = (x + ?)(x + ?)$
 $x = B$ (the coefficient of x)Factor: $6x^2 + 28x - 10$
Step1 - the GCF for all terms is 2. Factor 2 out:
 $6x^2 + 28x - 10 = 2(3x^2 + 14x - 5)$
Step 2 - there is no perfect square trinomial.
Step 3 - the coefficient of x^2 is 3 (not 1).
Look to rewrite $14x = ax + bx = 15x - x + 15$
 $ab = 3 \cdot (-5) = -15 + 12$
 $ab = 3 \cdot (-5) = -15 + 12$
 $ab = 3 \cdot (-5) = -15 + 12$
 $ab = 3 \cdot (-5) = -15 + 12$
 $ab = 3 \cdot (-5) = -15 + 12$
 $ab = 3 \cdot (-5) = -15 + 12$
 $ab = 3 \cdot (-5) = -15 + 12$
 $ab = 3 \cdot (-5) = -15 + 12$
 $ab = 3 \cdot (-5) = -15 + 12$
 $ab = 3 \cdot (-5) = -15 + 12$
 $ab = 3 \cdot (-5) = -15 + 12$
 $ab = 3 \cdot (-5) = -15 + 12$
 $ab = 3 \cdot (-5) = -15 + 12$
 $ab = 3 \cdot (-5) = -15 + 12$
 $ab = 3 \cdot (-5) = -15 + 12$
 $ab = 3 \cdot (-5) = -15 + 12$
 $ab = 3 \cdot (-5) = -15 + 12$
 $ab = 3 \cdot (-5) = -15 + 12$
 $ab = 3 \cdot (-5) = -15 + 12$
 $ab = 3 \cdot (-5) = -15 + 12$
 $ab = 3 \cdot (-5) = -15 + 12$
 $ab = 3 \cdot (-5) = -15 + 12$
 $ab = 3 \cdot (-5) = -15 + 12$
 $ab = 3 \cdot (-5) = -1$

Solving Quadratic Equations by Factoring		
A quadratic equation is an equation that can be written as	QuadraticSame equations inEquationsstandard form	
$Ax^{2} + Bx + C = 0$, where $A, B, C \in \mathbb{R}, A \neq 0$ The form $Ax^{2} + Bx + C = 0$ is called the standard form	$x^2 = 36$ $x^2 - 36 = 0$	
	$y = -2y^2 + 5$ $2y^2 + y - 5 = 0$	
Zero Factor Property If $a, b \in \mathbb{R}$ and $a \cdot b = 0$, then $a = 0$ or $b = 0$.	If $(x+5)(2x-1)=0$, then $x+5=0$ or $2x-1=0$	
To Solve Quadratic Equations by Factoring:	Solve: $3x^2 = 13x - 4$	
• Step 1: Write the equation in standard form (one side is zero).	Step 1 – standard form: $3x^2 - 13x + 4 = 0$ Step 2 – factor (see 4.4) $(3x - 1)(x - 4) = 0$	
• Step 2: Factor completely.	Step 3 – zero property: $3x - 1 = 0$ or $x - 4 = 0$ Step 4 – solve each linear equation:	
 Step 3: Set each factor containing a variable equal to zero. (according to the Zero Property) Step 4: Solve the resulting equations 	$x = \frac{1}{x} \qquad x = 4$	
 Step 5: Check solutions in the original equation. 	$\frac{3}{1}$ Step 5 – check both solutions in the original equation	
	by replacing x with $\frac{1}{3}$ and then x with 4	
Quadratic Equations and Problem Solving		
1. Understand the problem.	Helpful hints:	
Read and reread it.Draw a diagram.	Perimeter (P) = the sum of the lengths (l) of all sides.	
Choose a variable to represent the unknown.2. Translate the problem into an equation.3. Solve the equation.	Triangle Δ $P = l_1 + l_2 + l_3$ $A = \frac{base \cdot height}{2}$	
4. Interpret the results: discard the solutions that do not make sense as solutions of the problem. Check your solution in the stated problem and state your conclusion.	Square $P = 4l$ $A = l^2$ Rectangle $P = 2l + 2w$ $A = l \cdot w$	
	Right Triangle - Pythagorean Theorem:	
	$(leg)^{2} + (leg)^{2} = (hypotenuse)^{2}$	