Elementary Geometry Introduction

Historical Note

Geometry and Numbers

The history of mathematics shows that numbers and geometric together. Although plane geometry in its present form began $650-300$ B.C., the peoples of the earlier Babylonian and ($1800-650$ B.C.) had used numbers and geometric figures Both groups knew, for example, that a right angle could be triangle whose sides were 3,4 , and 5 units long. The ability corner in this way had many applications.
figures have long been linked
in Greece during the years
Egyptian civilizations
to solve practical problems.
obtained by forming a
to lay out a square

The early Egyptians and Babylonians did not content themselves with the 3-4-5 triangle. They knew that if the sides a, b, and c satisfied the equation $a^{2}+b^{2}=c^{2}$, the angle opposite side c (the hypotenuse) would be a right angle, but they were troubled by the simple case $1^{2}+1^{2}=c^{2}$, or $2=c^{2}$. Today we refer to the number c where $c^{2}=2$ as the square root of $2(\sqrt{2})$.

However, for the Greeks of $650-300$ B.C., not having "exact" numbers (i.e., integers or fractions) for the irrationals was a genuine and important problem. To overcome this difficulty they decided to work all numbers geometrically. They began with a certain length to represent 1 . Other rational numbers were then represented in terms of this length.

Can you represent the number 2 ?

How about the number $\frac{1}{2}$?

The irrational number $\sqrt{2}$ was represented by the length of the hypotenuse of a right triangle whose other two sides were each one unit long.

Arithmetic operations were done geometrically. The answer to $1+\sqrt{2}$, for example, was represented by the line segment formed by adjoining a segment representing 1 to a segment representing $\sqrt{2}$.

The answer to a multiplication of two numbers was represented by the area of a rectangle, and the product of three numbers was a volume. A product of four numbers, however, was inconceivable because there was no geometric figure to represent it.

The geometry of classical Greece was a masterpiece of mathematics, and it had a profound influence on the development of European mathematics for many hundreds years. Its effect, in a very small way, may be noted today in our practice of referring to the multiplication 5×5, for example, as "squaring" and to the multiplication of $5 \times 5 \times 5$ as "cubing".

The Nature of Geometry

The word geometry comes from the Greek language and means, "earth measure", but the study of geometry involves more than just the size of our planet. Our world is filled with objects that have size, shape, and position and that are separated by varying distances, and geometry is a systematic study of these observable properties. Hence, "earth measure" should suggest such figures as triangles, rectangles, and circles and the use of numbers to measure their sizes.

Our textbook is primarily about plane geometry, that is, about figures that can be drawn on a flat surface. The first systematic study of the properties of plane figures was begun in Greece by Thales ($640-546$ B.C.), who had learned about geometry from the Egyptians.

Thales' most famous student was Pythagoras, whose name still identifies an important property of right triangles. There is a legend that Pythagoras wanted to see if he could teach someone geometry. After finding a somewhat reluctant student, Pythagoras agreed to pay him a penny for each theorem he learned. Because the student was very poor, he worked diligently. After a time, however, the student realized that he had become more interested in geometry than in the money he was accumulating. In fact, he became so intrigued with his studies that he begged Pythagoras to go faster, offering now to pay him back a penny for each theorem. Eventually Pythagoras got all his money back!

Perhaps the most creative mathematician of ancient Greece was Archimedes (287-212 B.C.), whose many achievements include a good estimate of the numerical relation, denoted π, between the circumference (length) of any circle and its diameter.

Probably the most famous of the Greek geometers was Euclid ($330-275$ B.C.), the first to systematically organize in book form the then-known facts of plane geometry. For this reason, the geometry we will study is often called Euclidean geometry. Euclid's method, now called a deductive system, has had a profound effect on the nature of scientific study, and his books, called Elements, are probably the most famous textbooks of all times.

What is there about geometry that is so fascinating? Geometry was the first system of ideas developed by man in which a few simple statements were assumed and then used to derive ones that are more complex. Such a system is called deductive. The beauty of geometry as a deductive system has inspired men in other fields to organize their ideas in the same way. Sir Isaac Newton's Principia, in which he tried to present physics as a deductive system, and the philosopher Spinoza's Ethics are especially noteworthy examples.

There are countless examples of ways in which geometric facts may be used. It is said that Thales was able to find the height of and Egyptian pyramid by measuring the length of its shadow. This involves the idea of representing the physical situation by a geometric figure or model. No doubt Thales knew enough about triangles to relate his measurements to a geometric model and determine the unknown height.

The study of geometry is also valuable because of its wide variety of applications to other subjects. Astronomers, for example, have used geometry to measure the distance from the earth to the moon, artists have used it to develop the theory of perspective, and chemists have used it to understand the structure of molecules.

These examples point up the fact that to apply geometry we must learn about basic geometric figures containing points, lines, angles, triangles, and so on. It is these figures that are used to model physical reality and thus bridge the gap between the things we observe and the mathematical concepts we use to answer questions.
The relations and facts of geometry will be developed in the form of a mathematical system, a modern version of Euclid's approach.

Logic (Appendix L)

To be confident of the conclusions that we may draw in geometry, we must have some basis for understanding them and for convincing others that they are correct. Deductive reasoning provides this basis.

One of the goals of studying geometry is to develop the ability to think critically. An understanding of the methods of deductive reasoning is fundamental in the development of critical thinking.

We need to have a common basis for drawing conclusions with which we can all agree. Our study of the nature of deductive reasoning will help provide this basis.

Definition A STATEMENT is a group of words and symbols that can be classified collectively as true or false, but not both simultaneously.

Exercise \#1 \quad Which sentences are statements? If a sentence is a statement, classify it as true or false.
a) Where do you live?
b) $4+7 \neq 5$
c) Washington was the first U.S president. \qquad
d) $x+3=7$ when $x=5$.

Note: \quad We represent statements by letters such as P, Q, and R.

Definition The NEGATION of a given statement P makes a claim opposite that of the original statement. The negation of a true statement is false, and the negation of a false statement is true.

If P is a statement, $\sim P($ read "not $P)$ indicates its negation.

Definition A TRUTH TABLE is a table that provides the truth values of a statement by considering all possible true/false combinations of the statement's components.

P	$\sim P$		
T	F		
F	T	\longrightarrow	
:---:			

Exercise \#2 Give the negation of each statement.
a) Christopher Columbus crossed the Atlantic Ocean.
b) $2+5=7$
c) Her aunt's name is Lucia.
d) $y>12$
e) $q \geq 5$

Note: QUANTIFIERS are used extensively in mathematics to indicate how many cases of a particular situation exist.

UNIVERSAL QUANTIFIERS:
all, each, every, no(ne)

EXISTENTAIL QUANTIFIERS:
some, there exists, at least one

Exercise \#3 \mid Give the negation of each statement.
a) Some cats have fleas.
b) Some cats do not have fleas.
c) No cats have fleas.
d) All jokes are funny.
e) Every dog has its day.
f) No computer repairman can play blackjack. \qquad

COMPOUND STATEMENTS

Statements can be combined to form compound statements using logical connectives (connectives) such as and, or, not, and if...then.

Exercise \#4
Decide whether each of the following statements is compound.
a) My brother got married in London.
b) I read the Chicago Tribune and I read the New York Times. \qquad
c) If Julie sells her quota, then Bill will be happy.

Connective	Symbol	Type of Statement
and	\wedge	Conjunction
or	\vee	Disjunction
not	\sim	Negation

Exercise \#5 Let p represent the statement "She has green eyes" and let q represent the statement "He is 48 years old". Translate each symbolic compound statement into words.
a) $\sim p$
b) $p \wedge q$
c) $\sim(\sim p \wedge q)$

Exercise \#6

Let p represent the statement "Chris collects videotapes" and let q represent the statement "Jack plays the tuba." Convert each of the following compound statement into symbols.
a) Chris collects videotapes and Jack does not play the tuba. \qquad
b) Chris does not collect videotapes or Jack plays the tuba. \qquad
c) Neither Chris collects videotapes nor Jack plays the tuba. \qquad

Definition A CONJUNCTION is a statement of the form P and Q.

$$
P \wedge Q
$$

P	Q	$P \wedge Q$

For the conjunction to be true, it is necessary for P to be true and Q to be true.
$\underline{\text { Exercise \#7 }} \mid$ Let $P=$ "Babe Ruth played baseball" and $Q=" 4+3<5 . "$ Classify as true or false:
a) $P \wedge Q$
b) $P \wedge \sim Q$

Definition A DISJUNCTION is a statement of the form P or Q.

$$
P \vee Q
$$

A disjunction is false only if P and Q are both false.

Example: You can join the Math Club if you have an A average or you are enrolled in a mathematics class.

Exercise \#8 \mid Let $P=$ "Babe Ruth played baseball" and $Q=" 4+3<5$." Classify as true or false:
a) $P \vee Q$
b) $P \vee \sim Q$

Exercise \#9
Statement P is true, Q is true, and R is false. Classify each statement as true or false.
a) $P \wedge Q$
b) $Q \wedge R$
c) $P \wedge(Q \vee R)$
$\underline{\text { Exercise \#10 }}$ Construct a truth table for each compound statement.
a) $\sim p \wedge q$
b) $(q \vee \sim p) \vee \sim q$

Definition An IMPLICATION or CONDITIONAL is a statement of the form "If P, then Q."
Note: $\quad P$ is called the hypothesis (or antecedent) Q is called the conclusion (or consequent)

$$
P \rightarrow Q
$$

P	Q	$P \rightarrow Q$

The conditional statement makes a promise and fails to satisfy the conditions of this promise only when P is true and Q is false.

Example Consider the claim, "If you are good, then I'll give you a dollar."
The only way the claim is false is when "you are good, but I don't give you the dollar."
Consider the statement made by a politician, Senator Bridget Terry, "if I am elected, then taxes will go down."
The only way the claim is false is when she is elected, but the taxes do not go down.

Definition Two statements are logically equivalent if their truth values are the same for all possible true/false combinations of their components.

Definition A TAUTOLOGIE is a statement that is true for all possible truth value of its components.

Exercise \#11 Form a truth table and determine all possible truth values for the given statement. Is the given statement a tautology?
$[(P \rightarrow Q) \wedge P] \rightarrow Q$

DEMORGAN'S LAWS

In the study of logic, DeMorgan's Laws ($19^{\text {th }}$ century) are used to describe the negation of the conjunction (\wedge) and disjunction (\vee).

1. $\sim(P \wedge Q) \equiv \sim P \vee \sim Q$ The negation of a conjunction is the disjunction of negations.
2. $\sim(P \vee Q) \equiv \sim P \wedge \sim Q$ The negation of a disjunction is the conjunction of negations.

Proof of DeMorgan's first law

Exercise \#12 Use DeMorgan's Laws to write the negation of the given statement.
a) $P \wedge Q$
b) Mary is an accountant or hamburgers are health food.
c) It is cold and snowing.

Exercise \#13 Use a truth table to show that $[P \wedge \sim Q]$ is the negation of $P \rightarrow Q$.

$$
\sim(P \rightarrow Q) \equiv P \wedge \sim Q
$$

Exercise \#14 Write the negation of the given statement.
a) If it is medicine, then it tastes bad.
b) If I am good, then I can go to the movie.
c) You can pay me now or you can pay me later.
d) It is summer and there is no snow.

CONVERSE . INVERSE. CONTRAPOSITIVE

Lewis Carroll, the author of Alice's Adventures in Wonderland and Through the looking Glass, was a mathematician teacher who wrote stories as a hobby. His books contain many amusing examples of both good and deliberately poor logic. Consider the following conversation held at the Mad Hatter's tea Party.
" Then you should say what you mean,", the March Hare went on.
"I do,", Alice hastily replied; "at least - at least I mean what I say - that's the same thing, you know."
" Not the same thing a bit!" said the Hatter. "Why, you might just as well say that 'I see what I eat' is the same thing as 'I eat what I see'!"
"You might just as well say, "added the March Hare, "that 'I like what I get' is the same as 'I get what I like'!"
"You might just as well say," added the Dormouse, who seemed to be talking in his sleep, "that 'I breathe when I sleep' is the same thing as 'I sleep when I breathe'!"
"It is the same thing with you," said the Hatter, and here the conversation dropped, and the party went silent for a minute.

Carroll is playing here with pairs of related statements and the Hatter, the Hare, and the Dormouse are right: the sentences in each pair do not say the same thing at all.

Conditional statement: $\quad P \rightarrow Q \quad$ If P, then $Q .(P$ implies $Q)$

Its CONVERSE

$$
Q \rightarrow P
$$

If Q, then P.

- The converse of a conditional statement is formed by interchanging its hypothesis and conclusion.
- The converse of a true statement may be false. It is also possible that it may be true, but in either case a statement and its converse do not have the same meaning.

Its INVERSE:

If not P, then not Q.

- The inverse of a conditional statement is formed by denying both its hypothesis and conclusion.

Its CONTRAPOSITIVE: $\quad \sim Q \rightarrow \sim P$ If not Q, then not P.

- The contrapositive of a conditional statement is formed by interchanging its hypothesis and conclusion and denying both.

Exercise \#15 Write each statement in the form "if p, then q."
a) You'll be sorry if I go.
b) Today is Friday only if yesterday was Thursday.
c) All nurses wear white shoes. \qquad

Exercise \#16 State the hypothesis and the conclusion of each statement.
a) If you go to the game, then you will have a great time.

Hypothesis: \qquad
Conclusion: \qquad
b) If two chords of a circle have equal lengths, then the arcs of the chords are congruent.

Hypothesis: \qquad
Conclusion: \qquad
b) Vertical angles are congruent when two lines intersect.

Hypothesis: \qquad
Conclusion: \qquad

Identify the relationship of each of the lettered statements to the given statement if possible. Write "converse," "inverse," "contrapositive," "original statement," or "none,", as appropriate.

Lady kangaroos do not need handbags.
a) If a kangaroo is not a lady, it needs a handbag.
b) If it needs a handbag, then it is not a lady kangaroo. \qquad
c) A kangaroo does not need a handbag if it is a lady. \qquad

Exercise \#18 Write the inverse, converse, and contrapositive of the following statement: "If you live in Atlantis, then you need a snorkel."
a) Inverse: \qquad
b) Converse: \qquad
c) Contrapositive:

Suppose that during a trial a lawyer claims that, from the evidence presented, the
 guilty person is obviously color-blind and that everyone on the jury accepts this as true. Then he produces proof that Mr. Black is color-blind. Must the jury conclude that Mr. Black is guilty? Suppose also that it is established that Miss White is not colorblind. Must Miss White be innocent?

Definition An ARGUMENT is a set of statements called premises, followed by a statement called the conclusion. In a VALID ARGUMENT, the truth of the premises forces a conclusion that must also be true.

| LAW OF DETACHMENT | $1 . P \rightarrow Q$ Premise 1
 $2 . P$ Premise 2
 $\mathrm{C} . Q$ Conclusion |
| :--- | :--- | :--- |

Give the symbolic form and prove the Law of Detachment

ATTENTION!!! INVALID ARGUMENT

$1 . P \rightarrow Q$	Premise 1
$2 . Q$	Premise 2
C. P	Conclusion

Exercise \#19 Use the Law of Detachment to draw a conclusion.
a) If two angles are complementary, the sum of their measures is $90^{\circ} . \angle 1$ and $\angle 2$ are complementary.

CONCLUSION: \qquad
e) If it gets hot this morning, we will have to turn on the air conditioner. It is hot this morning.

CONCLUSION: \qquad

Exercise \#20 Decide whether each argument is valid or invalid.
a) All boxers wear trunks.

Chris Mader is a boxer.
Chris Mader wears trunks.
b) All Southerners speak with an accent.

Bill speaks with an accent.
Bill is a Southerner.

LAW OF NEGATIVE INFERENCE

$1 . P \rightarrow Q$	Premise 1
$2 . \sim Q$	Premise 2
C. $\sim P$	Conclusion

Give the symbolic form and prove the Law of Negative Inference

Exercise \#21 Use the Law of Negative Inference to draw a conclusion.
a) If Tom doesn't finish the job then I will not pay him. I did pay Tom for the job.

CONCLUSION: \qquad
b) If the traffic light changes, then you can travel through the intersection. You cannot travel through the intersection.

CONCLUSION: \qquad

LAW OF SYLLOGISM

Give the symbolic form and prove the Law of Syllogism

Exercise \#22 Use the Law of Syllogism to draw a conclusion.
If Izzi lives in Chicago, then she lives in Illionois. If a person lives in Illinois, then she lives in the Midwest.
\qquad

Exercise \#23 \mid Determine which arguments are valid.
a) 1. If Bill and Mary stop to visit, I'll prepare a meal.
2. Bill stopped to visit at 5 p.m.
C. I prepared a meal.

VALID: YES NO
b) 1. If it turns cold and snows, I'll build a fire in the fireplace.
2. The temperature began to fall around 3 p.m.

3 . It began snowing before $5 \mathrm{p} . \mathrm{m}$.
C. I built a fire in the fireplace.

VALID: YES NO

LAW OF DENIAL

Give the symbolic form and prove the Law of Denial

Exercise \#24 Use the Law of Denial to draw a conclusion.
Terry is sick or hurt.
Terry is not hurt.
CONCLUSION: \qquad

