Chapter 8 Radicals

In class work: Solve each problem.

Section 8.2
Multiplying, Dividing, and Simplifying Radical

1) Simplify the following:
$\sqrt{90}$
$\sqrt{125}$
$\sqrt{128}$
$\frac{\sqrt{200}}{\sqrt{2}}$
$\sqrt{\frac{5}{2}} \cdot \sqrt{\frac{125}{8}}$
$\frac{30 \sqrt{10}}{5 \sqrt{2}}$
$\sqrt[3]{40}$
$\sqrt[4]{243}$
$\sqrt[3]{-\frac{216}{125}}$
2) Simplify each radical. Assume all variables represent nonnegative real numbers.
$\sqrt{m^{2}}$
$\sqrt{36 z^{2}}$
$\sqrt{18 x^{8}}$
$\sqrt{z^{5}}$
$\sqrt{81 m^{4} n^{2}}$
$\sqrt[3]{p^{3}}$
$\sqrt[3]{15 t^{5}}$
$\sqrt[3]{216 m^{3} n^{6}}$

Section 8.3
Adding and Subtracting Radicals
3) Simplify. Assume all variables represent nonnegative real numbers.

$$
\begin{aligned}
& 2 \sqrt{3}+5 \sqrt{3} \\
& 2 \sqrt{50}-5 \sqrt{72} \\
& 9 \sqrt{24}-2 \sqrt{54}+3 \sqrt{20} \\
& \frac{1}{4} \sqrt{288}+\frac{1}{6} \sqrt{72} \\
& \sqrt{6} \cdot \sqrt{2}+3 \sqrt{3} \\
& 2 \sqrt[4]{48}-\sqrt[4]{243} \\
& \sqrt{32 x}-\sqrt{18 x} \\
& \sqrt{75 x^{2}}+x \sqrt{300} \\
& 5 \sqrt[3]{27 x^{2}}+8 \sqrt[3]{8 x^{2}} \\
& 10 \sqrt[3]{4 m^{4}}-3 m \sqrt[3]{32 m}
\end{aligned}
$$

Section 8.4

Rationalizing the Denominator
The process of changing the denominator from a radical (irrational number) to a rational number is called rationalizing the denominator.

Simplified form of a radical

1. The radicand contains no factor(except1) that is a perfect square (when dealing with square roots), a perfect cube(when dealing with cube roots), and so on.
2. The radicand has no fractions.
3. No denominator contains a radical.
4) Rationalize each denominator.
$\frac{6}{\sqrt{5}}$
$\frac{12 \sqrt{10}}{8 \sqrt{3}}$
$\frac{6}{\sqrt{200}}$
$\frac{\sqrt{5}}{\sqrt{10}}$
$\sqrt[3]{\frac{1}{2}}$
$\frac{\sqrt[3]{7 m}}{\sqrt[3]{36 n}}$
$\sqrt[3]{\frac{3}{25 x^{2}}}$

Section 8.5

More Simplifying and Operations with Radicals
6) Simplify.

$$
\begin{array}{ll}
\sqrt{5}(\sqrt{3}-\sqrt{7}) & \sqrt[3]{4}(\sqrt[3]{2}-3) \\
3 \sqrt{14} \cdot \sqrt{2}-\sqrt{28} & (5 \sqrt{7}-2 \sqrt{3})^{2} \\
(2 \sqrt{6}+3)(3 \sqrt{6}+7) & (\sqrt{5}+\sqrt{30})(\sqrt{6}+\sqrt{3}) \\
(\sqrt{6}+1)^{2} & (\sqrt[3]{4}+\sqrt[3]{2})(\sqrt[3]{16}-\sqrt[3]{8}+\sqrt[3]{4}) \\
(5 a-\sqrt{2})(5 a+\sqrt{2}) &
\end{array}
$$

5) Simplify.

$$
\begin{aligned}
& \sqrt{\frac{7}{13}} \cdot \sqrt{\frac{13}{3}} \\
& \sqrt{\frac{9}{8}} \cdot \sqrt{\frac{7}{16}}
\end{aligned}
$$

$$
\sqrt{\frac{16}{m}}
$$

$$
\frac{\sqrt{7 x^{3}}}{\sqrt{y}}
$$

$$
\sqrt{\frac{2 x^{2} z^{4}}{3 y}}
$$

7) Rationalize.
$\frac{1}{2+\sqrt{5}}$
$\frac{\sqrt{12}}{\sqrt{3}+1}$
$\frac{\sqrt{6}+\sqrt{5}}{\sqrt{3}+\sqrt{5}}$
$\frac{\sqrt{108}}{3+3 \sqrt{3}}$
8) Reduce to lowest terms.
$\frac{5 \sqrt{7}-10}{5} \quad \frac{6 \sqrt{5}-9}{3} \quad \frac{16+8 \sqrt{2}}{24}$
