REVIEW Chapter 1 – The Real Number System

		i në këai Numbë
In class wo	rk : Complete all statements. S	olve all exercises.
(Section 1.4) Definition	A set is a collection of object	s (elements).
The Set of Natural Numbers N		
	$\mathbb{N} = \{1, 2, 3, 4, 5,\}$	
The Set of W	hole Numbers W	
	$W = \{0, 1, 2, 3, 4, 5,\}$	
The Set of Int	egers_Z	
	Z = {, -4, -3, -2, -1, 0, 1,	2, 3, 4, 5,}
The Set of Ra	tional Numbers \mathbb{Q}	
	$\mathbb{Q} = \left\{ \frac{a}{b} a, b \in \mathbb{Z}, b \neq 0 \right\}$	
The Set of Irr	$\begin{bmatrix} b \\ b \end{bmatrix}^{\mu, \nu \in \mathbb{Z}, \nu \neq 0}$	
	Examples: $\sqrt{2}, -\sqrt{5}, \mathbf{p}$	
$\underline{\text{The Set of Real Numbers}} \mathbb{R} \qquad \qquad \mathbb{N} \subset W \subset \mathbb{Z} \subset \mathbb{Q} \subset \mathbb{R}$		
	$\mathbb{R} = \{ x \mid x \text{ is rational or } x \text{ i.} \}$	s irrational }
Exercise #1	Decide whether each stateme	nt is true or false:
	a) Every natural number is po	ositive.
	b) Every whole number is po	sitive.
	c) Every integer is a rational	number.
Exercise #2	List all numbers from the set	$\left\{-9, -\sqrt{7}, -1\frac{1}{4}, -\right.$
	a) natural numbers	3, 7
	b) whole numbers but not nat	tural numbers 0
	c) odd integers	-9, 3, 7
	d) rational numbers e) irrational numbers	$-9, -1\frac{1}{4}, -3/5, 0, 3, -\sqrt{7}, \sqrt{5}$

Mathematical Symbols

SYMBOL	MEANING	EXAMPLES
=	is equal to	
≠	is not equal to	
E	belongs to (about an element)	
¢	it doesn't belong to	
<	is less than	
\leq	is less than or equal to	
>	is greater than	
≥	is greater than or equal to	

Definition A number *a* is less than a number *b* (a < b) if *a* is to the left of *b* on the number line.

Exercise #3 Write equivalent statements:

a) $2 \le 3$	3≥2
b) 30>5	5 < 30
c) $5 > -1 \ge -6$	$-6 \le -1 < 5$
d) −4 < −2	-2 > -4

Exercise #4 Fill in the appropriate ordering symbol: either <, >, or =.

- a) 2 > -5
- b) 19 **>** 24 − 10
- c) $4 4 = 4 \cdot 0$
- **Exercise #5** Write each word statement in symbols:
 - a) Fifteen is equal to five plus ten.15 = 5 + 10b) Nine is greater than five minus four.9 > 5 4c) Sixteen is not equal to nineteen. $16 \neq 19$ d) Two is less than or equal to three. $2 \leq 3$

(Section 1.7)

Properties of Real Numbers

PROPERTIES	ADDITION +	MULTIPLICATION •
COMMUTATIVITY	$a+b=b+a$, $\forall a,b\in\mathbb{R}$	$ab = ba \forall a, b \in \mathbb{R}$
ASSOCIATIVITY	$(a+b)+c = a + (b + c), \forall a, b, c \in \mathbb{R}$	$(ab)c = a(bc), \forall a, b, c \in \mathbb{R}$
IDENTITY ELEMENT	$\operatorname{Zero} 0 \\ a+0=0+a, \forall a \in \mathbb{R}$	One 1 $a \cdot 1 = 1 \cdot a, \forall a \in \mathbb{R}$
INVERSE ELEMENT	$\forall a \in \mathbb{R}$, there is $-a \in \mathbb{R}$ such that a + (-a) = (-a) + a = 0	$\forall a \in \mathbb{R}, a \neq 0$, there is $\frac{1}{a} \in \mathbb{R}$ such that
		$a \cdot \frac{1}{a} = \frac{1}{a} \cdot a = 1$

Exercise #6 Find the opposite and the reciprocal (if any) of each number:

The Number	Its Opposite	Its
		Reciprocal
2	-2	$\frac{1}{2}$
-4	4	$-\frac{1}{4}$
0	0	none
$\frac{2}{3}$	$-\frac{2}{3}$	$\frac{3}{2}$

The Double Negative Rule

-(-a) = a

Exercise #7	Identify the property used in each example: a. $(-23) + (-11) = (-11) + (-23)$	commutative property for addition
	b. $[123(-2)](-3) = 123[(-2)(-3)]$	associative property for multiplication
	$c.1 \cdot 23 = 23 \cdot 1$	identity element for multiplication
	d.[(-29)+17]+54=(-29)+[(17+54)] associative property for addition
	e.(-101)(29) = 29(-101)	commutative property for multiplication
	f. $100 + 0 = 0 + 100 = 100$	identity element for addition

(Section 1.4)

The Absolute Value of a Number

<u>Definition (1)</u> The absolute value of a number is the distance between the number and 0 (the origin) on the number line.

|a| = dist(a,0)

<u>Property</u> $|a| \ge 0, \quad \forall a \in R$

Definition (2)	$ a = \begin{cases} a, & \text{if } a \ge 0\\ -a, & \text{if } a < 0 \end{cases}$
Definition (2)	$ a ^{-} \left\{ -a, \text{ if } a < 0 \right\}$

Exercise #8 Simplify the following:

a)
$$|-7| = 7$$

b) $-(-7) = 7$
c) $-|-7| = -7$
d) $-|-(-7)| = -7$

Exercise #9 Fill in the appropriate ordering symbol: either <, >, or =.

a)
$$|-3| < |-4|$$

b) $3 < |-4|$

c)
$$-|-6| < -|-4|$$

d)
$$-6 < -(-3)$$

e)
$$-|8| < |-9|$$

f)
$$|6-5| < |2-6|$$

(Sections 1.2, 1.5, 1.6)

Operations with Real Numbers

Adding Real Numbers	Same sign	Add the absolute values of the numbers.The sum has the same sign as the given numbers.
	Different signs	Find the difference between the larger absolute value and the smaller.The sum has the sign of the number with the larger value.

<u>Subtracting Real Numbers</u> a-b=a+(-b)

Multiplying Real Numbers

Dividing Real Numbers
$$\frac{a}{b} = a \cdot \frac{1}{b}$$

<u>Exponent</u> $a^n = a \cdot a \cdot \dots \cdot a, \forall n \in \mathbb{N}$ *n* times

a is called **base**

n is called power (exponent)

Exercise #10 Simplify the following:

- a) $5^2 = 25$ e) $2^3 = 8$
- b) $(-5)^2 = 25$ f) $(-2)^3 = -8$
- c) $-5^2 = -25$ g) $-2^3 = -8$
- d) $-(-5)^2 = -25$ h) $-(-2)^3 = 8$

i) $\left(\frac{1}{3}\right)^2 = \frac{1}{27}$ j) $\left(-\frac{3}{4}\right)^3 = -\frac{27}{64}$ k) $-\left(-\frac{1}{2}\right)^4 = -\frac{1}{16}$

- <u>Order of Operations</u> If grouping symbols are present, simplify within them, innermost first, in the following order:
 - Step 1powersStep 2multiplications and divisions in order from left to rightStep 3additions and subtractions in order from left to right

Exercise #11 Simplify the following: (See solutions at the end of the handout)

a)
$$|7 \cdot 2 - 8^2|$$

b) $(-5)^2 - 3^2 + |10 - 2 \cdot 3|$
c) $-18 \div (-3)^2 + |-8| - |-4|$
d) $\frac{(-4)^2 - |1 - 2^3|}{-(-2)^3 + (-1)^{125}}$
e) $\frac{|-8 - 4| \div (2 - 2^2)}{-18 \div (-3)^2 + |-8| - |-4|}$
f) $238 \cdot 0 - 230 \div 10 + 999 \div 9 - 31 \cdot 100$
g) $-2(-5)^2 + 10 \div (2) - (-3)^2 (2) + 4^2 \div (-2)$
h) $(4 - 7)(20 - 21)^3 - 2[-10(-3) + 2(-1 - 3)]$
i) $-2(-1)(-7)(-6) + (-2)(-1 - 7) - 3(2 - 5)$
j) $|2 - 5| + |7 + 10| - |9 - 12| + |0 - 9|$

Exercise #12 Translate each phrase into a mathematical statement:

a) The sum of -5 and 12 and 6	(-5) + 12 + 6
b) 14 added to the sum of -19 and -4 .	[(-19) + (-4)] + 14
c) The difference between $4 \text{ and } -8$	4 - (- 8)
d) The sum of 9 and -4 , decreased by 7.	[9+(-4)] - 7
e) 12 less than the difference between 8 and -5 .	[8 - (- 5)] - 12
f) The product of -9 and 2, added to 9.	9 + [(-9)2]
g) Twice the product of -1 and 6, subtracted from -4 .	(-4) - 2[(-1)6]
h) The quotient of -12 and the sum of -5 and -1 .	$\frac{-12}{(-5)+(-1)}$

7

<u>Sums, Terms, Products, and Factors</u> <u>Prime and Composite Numbers</u>

Sum is the word we use for addition.

The numbers to be added in the sum are called terms.

Product is the word we use for multiplication.

The numbers being multiplied are called factors.

<u>Definition</u> a is divisible by b (a:b) or b divides a (b|a) if, when dividing a by b, the remainder is 0.

Equivalent statements	<i>a</i> is divisible by <i>b</i>	6 is divisible by 2
	a is a multiple of b	6 is a multiple of 2
	b divides a	2 divides 6
	<i>b</i> is a factor of <i>a</i>	2 is a factor of 6
	<i>b</i> is a divisor of <i>a</i>	2 is a divisor of 6

Exercise #13 List all the factors of:

20: 1, 2, 4, 5, 10, 20
5: 1, 5
12: 1, 2, 3, 4, 6, 12
17: 1, 17

Property 199	The number 1 is a factor of any number.	$1 \mid a, \forall a \in \mathbb{R}$
	Any nonzero number is a factor of itself.	$a \mid a, \forall a \neq 0$

DefinitionA prime number is a natural number (excluding1) that is divisible only by 1 and itself.A natural number greater than 1 that is not prime is called composite.

The Set of Prime Numbers: $\{2,3,5,7,11,13,17,19,23,29,31,...\}$

Tests for divisi	bility:	A number is divisible by
		2 if its last digit is divisible by 2.
		3 if the sum of its digits is divisible by 3.
		4 if the number formed by its last two digits is divisible by 4.
		5 if the last digit is $0 \text{ or } 5$.
		8 if the last three digits form a number divisible by 8.
		9 if the sum of its digits is divisible by 9.
		10 if its last digit is 0.
Exercise #14		
	a)	List all the factors of 24: 1, 2, 3, 4, 6, 8, 12, 24

	b) List all the prime factor) List all the prime factors of 24:) List some multiples of 2:		2, 3	
	c) List some multiples of 2			2, 4, 6, 8, 10, 12,	
	d) List all the factors of 2:) List all the factors of 2:		1, 2	
	e) Find the prime factorization of each number: 15, 28, 108, 1200"				
3 15 5 5 1	2 28 2 14 7 7 1	2 108 2 54 3 27 3 9 3 3 1	2 * 5 2 * 5 2 2 * 3	1200 120 12 6 1	
15 = 3.5	$28 = 2^2 \cdot 7$	$108 = 2^2 \cdot 3$	3 ³ 1200	$= 2^4 \cdot 3 \cdot 5^2$	

(Section 1.3)

Algebraic Expressions

<u>Definition</u> A variable is a symbol (usually a letter) that stands for a number (or numbers).

Variables can be used:

(1) <u>in equations</u>
 variables represents unknown quantities
 the variable is holding the place of a particular number (or numbers) that has not yet been identified but which needs to be found.

2x + 3 = 5

(2) <u>in general statements</u> - the variable describes a general relationship between numbers and/or arithmetic operations.

a+b=b+a

<u>Definition</u> A constant is a symbol whose value is fixed.

<u>Definition</u> An **algebraic expression** is a finite number of additions, subtractions, multiplications, and divisions of variables and constants.

Note: An algebraic expression DOES NOT contain the = sign.

- <u>Definition</u> An equation is a statement that two algebraic expressions are equal.
- <u>Definition</u> The process of replacing the variable in an algebraic expression with specific values and evaluating the result is called **algebraic substitution**.

Exercise #15 Evaluate the following expressions if x = 2, y = -3, z = -1: (See solutions at the end of the handout)

a)
$$\frac{|xy|}{3z}$$

b) $\frac{3y^2 - x^2 + 1}{y|z|}$
c) $yz^3 - (xy)^3$

Exercise #16 Translate each of the following algebraically:

1) Eight more than three times a number.

Choose a variable to represent the unknown: let x be the number

Translate: 3x + 8

Identify the statement: Algebraic Expression

2) Three times the sum of eight and a number.

Choose a variable to represent the unknown let a be the number

Translate: 3(8+a)

Identify the statement: Algebraic Expression

3) Two less than five times a number is 18.

Choose a variable to represent the unknown let n be the number

Translate: 5n - 2 = 18

Identify the statement: Equation

4) The sum of two numbers is four less than their product.

Choose a variable to represent the unknown(s): let *x* be one number, let *y* be the other number

Translate: x + y = xy - 4

Identify the statement: Equation

7) Four less than a number is 12.

Choose a variable to represent the unknown: let t be the number

Translate: t - 4 = 12

Identify the statement: Equation

8) The product of a number and seven more than the number.

Choose a variable to represent the unknown: let n be the number

Translate: n(n+7)

Identify the statement: Algebraic Expression

9) The product of two more than a number and six less than the number.

Choose a variable to represent the unknown: let x be the number

Translate: (x+2)(x-6)

Identify the statement: Algebraic Expression

6) Four more than a number.

Choose a variable to represent the unknown: let x be the number

Translate: x + 4

Identify the statement: Algebraic Expression

$$\frac{\left[\overline{Exercise (14e^{-11})}\right]^{-1/-}}{\left(\frac{e}{2}\right)^{-1/2} - 8^{2}/2} = \frac{1/4 - 64}{-18 + 4} = \frac{-18}{-18 + 4} = \frac{1 - 50}{-18 + 4} = \frac{1 - 50}{-18 + 4} = \frac{1 - 50}{-18 + 4} = \frac{1 - 2}{-2 + 4} = \frac{12}{-2 + 4} = \frac{16}{-16 + 4} = \frac{16 + 1/4}{-16 + 4} = \frac{16 + 1/4}{-16 + 4} = \frac{16}{-16 + 4} = \frac{16}{-17} = \frac{16}{-17} = \frac{16 - 1/1 - 8}{-17} = \frac{16 - 1/1 - 8}{-17} = \frac{16}{-17} = \frac{16}{$$

$$\underbrace{(2)}_{-1} |-8 - 4| + (2 - 2^{2}) \\ -18 + (-3)^{2} + |-8| - |-4| \\ = \frac{1 - 12|_{+} + (2 - 4)}{-18 + 9 + 8 - 4} \\ = \frac{12 + (-2)_{-2}}{-2 + 8 - 4} = \frac{-6}{2} = -3 \\ \underbrace{(2)}_{-2} + 8 - 4 \\ = \frac{-6}{2} = -3 \\ \underbrace{(2)}_{-2} + 8 - 4 \\ = \frac{-6}{2} = -3 \\ \underbrace{(2)}_{-2} + 8 - 4 \\ = \frac{-6}{2} = -3 \\ \underbrace{(2)}_{-2} + 8 - 4 \\ = \frac{-6}{2} = -3 \\ \underbrace{(2)}_{-2} + 8 - 4 \\ = \frac{-6}{2} = -3 \\ \underbrace{(2)}_{-2} + 8 - 4 \\ = \frac{-6}{2} = -3 \\ \underbrace{(2)}_{-2} + 8 - 4 \\ \underbrace{(2)}_{-2} + 8 - 4 \\ = -3 \\ \underbrace{(2)}_{-2} + 8 - 4 \\ \underbrace{(2)}_{-2} + 4 \\ \underbrace{(2)}_{-2}$$

$$\begin{aligned} g &-2(-5)^{2} + 10 \div (2) - (-3)^{2}(2) + 4 \div (-3)^{2} \\ &= -2(25) + 5 - 9 \cdot 2 + 16 \div (-2) \\ &= -50 + 5 - 18 + (-8) \\ &= -45 - 18 - 8 \\ &= -(45 + 18 + 8) = -71 \end{aligned}$$

$$\begin{pmatrix} h \\ (4-7)(20-21)^{3}-2\left[-10(-3)+2(-1-3)\right]^{2} \\ = (-3)(-1)^{3}-2\left[30+2(-4)\right] \\ = (-3)(-1)-2(30-8) \\ = 3-2(22) \\ = 3-2(22) \\ = -91$$

•

$$-12 - (i) -2(-1)(-7)(-6) + (-2)(-1-7) - 3(2-5) = (i) -2(-1)(-7)(-6) + (-2)(-1-7) - 3(2-5) = (-3)(-1)^{3} - (2(-3))^{3} = (-3)(-1)^{3} - (2(-3))^{3} = (-3)(-1) - (-6)^{3} = (-3)(-6)^$$

= 20+6 = 26

$$=\frac{3\cdot 9-41}{(-3)\cdot 1}$$

$$=\frac{27-4+1}{-3}=\frac{24}{-3}=-8$$

· . _