Taylor and Maclaurin Series

In the preceding section we were able to find power series representations for a certain restricted class of functions. Here we investigate more general problems:

- Which functions have power series representations?
- How can we find such representations?

We start by supposing that \boldsymbol{f} is any function that can be represented by a power series.
(1) $f(x)=\sum_{n=0}^{\infty} c_{n}(x-a)^{n}$, for any x such that $|x-a|<R$

Let's find the coefficients C_{n}.

Therefore,
Theorem
If f has a power series representation (expansion) at a, that is, if

$$
f(x)=\sum_{n=0}^{\infty} c_{n}(x-a)^{n},|x-a|<R
$$

then its coefficients are given by the formula $c_{n}=\frac{f^{(n)}(a)}{n!}$

We see that if f has a power series expansion at a, then it must be of the following form:

$$
\begin{aligned}
f(x) & =\sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!}(x-a)^{n} \\
& =f(a)+\frac{f^{\prime}(a)}{1!}(x-a)+\frac{f^{\prime \prime}(a)}{2!}(x-a)^{2}+\frac{f^{\prime \prime \prime}(a)}{3!}(x-a)^{3}+\ldots
\end{aligned}
$$

the Taylor series of the function f at a.

For the special case $a=0$ the Taylor series becomes

$$
f(x)=\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^{n}=f(0)+\frac{f^{\prime}(0)}{1!} x+\frac{f^{\prime \prime}(0)}{2!} x^{2}+\frac{f^{\prime \prime \prime}(0)}{3!} x^{3}+\ldots
$$

the Maclaurin series of the function f at a.

Note We have shown that iff can be represented as a power series about a, then f is equal to the sum of its Taylor series. But there are functions that are not equal to the sum of their Taylor series.

Exercise 1 Find the Maclaurin series of the function $f(x)=e^{x}$ and its radius of convergence.

Conclusion: If e^{x} has a power series expansion at 0 , then $e^{x}=\sum_{n=0}^{\infty} \frac{x^{n}}{n!}$.

Question: Under what circumstances is a function equal to the sum of its Taylor series? In other words, if f has derivatives of all orders, when is it true that

$$
f(x)=\sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!}(x-a)^{n} ?
$$

Theorem
If $f(x)=T_{n}(x)+R_{n}(x)$, where T_{n} is the n th-degree Taylor polynomial of f at a and $\lim R_{n}(x)=0$ for $|x-a|<R$,
then f is equal to the sum of its Taylor series on the interval $|x-a|<R$.

$$
f(x)=\sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!}(x-a)^{n}, \text { with }|x-a|<R
$$

How to Estimate $R_{n}(x)$
Theorem - The Remainder Estimation Theorem
If $\left|f^{(n+1)}(x)\right| \leq M$ for $|x-a| \leq d$ (for some interval around a), then the remainder $R_{n}(x)$ of the Taylor series satisfies the inequality

$$
\left|R_{n}(x)\right| \leq \frac{M}{(n+1)!}|x-a|^{n+1} \text { for }|x-a| \leq d
$$

Exercise 2 Prove that e^{x} is equal to the sum of its Maclaurin series.

Exercise 3 Find the Taylor series for $f(x)=e^{x}$ at $a=2$.

Note: We have two power series for e^{x}, the Maclaurin series in Exercise 2 and the Taylor series in Exercise 3. The first is better if we are interested in values of x near 0 and the second is better if x is near 2 .

Exercise 4 Find the Maclaurin series for $\sin x$ and prove that it represents $\sin x$ for all x.
Exercise 5 Find the Maclaurin series for $\cos x$.
Exercise 6 Find the Maclaurin series for $f(x)=x \cos x$.
Exercise 7 Represent $f(x)=\sin x$ as the sum of its Taylor series centered at $\frac{\pi}{3}$.

Some important Maclaurin series that we have derived in this section and the preceding one
$\frac{1}{1-x}=1+x+x^{2}+x^{3}+\ldots=\sum_{n=0}^{\infty} x^{n} \quad$ for any $x \in(-1,1)$
$e^{x}=1+\frac{x}{1!}+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\ldots=\sum_{n=0}^{\infty} \frac{x^{n}}{n!} \quad$ for any $x \in(-\infty, \infty)$
$\sin x=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}+\ldots=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n+1}}{(2 n+1)!} \quad$ for any $x \in(-\infty, \infty)$
$\cos x=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!}+\ldots=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n}}{(2 n)!} \quad$ for any $x \in(-\infty, \infty)$
$\tan ^{-1} x=x-\frac{x^{3}}{3}+\frac{x^{5}}{5}-\frac{x^{7}}{7}+\ldots=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n+1}}{2 n+1} \quad$ for any $x \in[-1,1]$

Exercise $8 \quad$ a) Evaluate $\int e^{-x^{2}} d x$ as an infinite series.
b) Evaluate $\int_{0}^{1} e^{-x^{2}} d x$ correct to within an error of 0.001 .

Exercise 9 Find the first three nonzero terms in the Maclaurin series for
a) $e^{x} \sin x$
b) $\tan x$.

