120n

6.1 Volumes Using Cross-Sections

In-class work:

- 1. Show that the volume of a sphere of radius *r* is $V = \frac{4}{3}pr^3$.
- 2. Find the volume common to two spheres, each with radius *r*, if the center of each sphere lies on the surface of the other sphere. (A: $\frac{5p}{12}r^3$)
- 3. (Exercise #1 / 6.1) Find the volume of the solid that lies between planes perpendicular to the *x*-axis at x = 0 and x = 4. The cross-sections perpendicular to the axis on the interval $0 \le x \le 4$ are squares whose diagonals un from the parabola $y = -\sqrt{x}$ to the parabola $y = \sqrt{x}$. (A: 16)
- 4. (Exercise #11 / 6.1) Find the volume of a tetrahedron with three mutually perpendicular faces and three mutually perpendicular edges with lengths 3, 4, and 5 cm. (A: 10)
- 5. (Exercise #16 / 6.1) Find the volume of the solid generated by revolving the region bounded by $x = \frac{3y}{2}$, the y-axis, and y = 2 about the y-axis. (A:6**p**)
- 6. (Exercise #20 / 6.1) Find the volume of the solid generated by revolving the region bounded by the lines and curves given about the x-axis.

$$y = x^3, y = 0, x = 2$$
 (A: $\frac{120p}{7}$)

- 7. (Exercise #29 / 6.1) Find the volume of the solid generated by revolving the region in the first quadrant bounded above by the line $y = \sqrt{2}$, below by the curve $y = \sec x \tan x$, and on the left by the y-axis, about the line $y = \sqrt{2}$. (A: $\frac{p^2}{2} - \frac{11p}{3} + 2\sqrt{2p}$)
- 8. (Exercise #42 / 6.1) Find the volume of the solid generated by revolving the region bounded by $y = 4 x^2$ and y = 2 x about the *x*-axis. (A: $\frac{108p}{5}$)
- 9. (Exercise #46 / 6.1) Find the volume of the region enclosed by the triangle with vertices (0,1), (1,0), and (1,1) about the y-axis. (A: $\frac{2p}{3}$)