6.1 Volumes Using Cross-Sections

In-class work:

1. Show that the volume of a sphere of radius r is $V=\frac{4}{3} \pi r^{3}$.
2. Find the volume common to two spheres, each with radius r, if the center of each sphere lies on the surface of the other sphere.
(A: $\frac{5 \pi}{12} r^{3}$)
3. (Exercise \#1 / 6.1) Find the volume of the solid that lies between planes perpendicular to the x-axis at $x=0$ and $x=4$. The cross-sections perpendicular to the axis on the interval $0 \leq x \leq 4$ are squares whose diagonals un from the parabola $y=-\sqrt{x}$ to the parabola $y=\sqrt{x}$.
4. (Exercise \#11/6.1) Find the volume of a tetrahedron with three mutually perpendicular faces and three mutually perpendicular edges with lengths 3,4 , and 5 cm .
5. (Exercise \#16 / 6.1) Find the volume of the solid generated by revolving the region bounded by $x=\frac{3 y}{2}$, the y axis, and $y=2$ about the y-axis.
6. (Exercise \#20 / 6.1) Find the volume of the solid generated by revolving the region bounded by the lines and curves given about the x -axis.

$$
\begin{equation*}
y=x^{3}, y=0, x=2 \tag{7}
\end{equation*}
$$

7. (Exercise \#29 / 6.1) Find the volume of the solid generated by revolving the region in the first quadrant bounded above by the line $y=\sqrt{2}$, below by the curve $y=\sec x \tan x$, and on the left by the y-axis, about the line $y=\sqrt{2}$.
(A: $\frac{\pi^{2}}{2}-\frac{11 \pi}{3}+2 \sqrt{2 \pi}$)
8. (Exercise \#42 / 6.1) Find the volume of the solid generated by revolving the region bounded by $y=4-x^{2}$ and $y=2-x$ about the x-axis.
(A: $\frac{108 \pi}{5}$)
9. (Exercise \#46 / 6.1) Find the volume of the region enclosed by the triangle with vertices $(0,1),(1,0)$, and $(1,1)$ about the y-axis.
