### 12.2 Vectors

Definitions

1. A vector is a directed line segment.
2. Two vectors are equal if they have the same length and direction.
3. A vector is in standard position if its initial point is at the origin.
4. If $\vec{v}$ is a two-dimensional vector in the plane equal to the vector with initial point at the origin and terminal point $\left(v_{1}, v_{2}\right)$, then the component form of $\vec{v}$ is

$$
\vec{v}=\left\langle v_{1}, v_{2}\right\rangle
$$

5. If $\vec{v}$ is a three-dimensional vector equal to the vector with initial point at the origin and terminal point ( $v_{1}, v_{2}, v_{3}$ ), then the component form of $\vec{v}$ is

$$
\vec{v}=\left\langle v_{1}, v_{2}, v_{3}\right\rangle
$$

Notes

1. Given the points $P\left(x_{1}, y_{1}, z_{1}\right)$ and $Q\left(x_{2}, y_{2}, z_{2}\right)$, the standard position vector equal to $\overrightarrow{P Q}$ is

$$
\vec{v}=<x_{2}-x_{1}, y_{2}-y_{1}, z_{2}-z_{1}>
$$

2. Two vectors are equal if and only if their standard position vectors are identical.

## Vector Algebra

Let $\vec{u}=<u_{1}, u_{2}, u_{3}>$ and $\vec{v}=<v_{1}, v_{2}, v_{3}>$ be vectors with $k$ a scalar.
Definition $\quad$ Addition: $\quad \vec{u}+\vec{v}=<u_{1}+v_{1}, u_{2}+v_{2}, u_{3}+v_{3}>$
Scalar multiplication: $\quad k \vec{u}=<k u_{1}, k u_{2}, k u_{3}>$

Properties Let $\vec{u}, \vec{v}, \vec{w}$ be vectors and $a, b$ be scalars.

1. $\vec{u}+\vec{v}=\vec{v}+\vec{u}$
2. $(\vec{u}+\vec{v})+\vec{w}=\vec{u}+(\vec{v}+\vec{w})$
3. $\vec{u}+\overrightarrow{0}=\vec{u}$
4. $\vec{u}+(-\vec{u})=\overrightarrow{0}$
5. $0 \vec{u}=\overrightarrow{0}$
6. $\vec{u}=\vec{u}$
7. $a(b \vec{u})=(a b) \vec{u}$
8. $a(\vec{u}+\vec{v})=a \vec{u}+a \vec{v}$
9. $(a+b) \vec{u}=\vec{a} \vec{u}+b \vec{u}$

Exercise 1 Find the vector represented by the directed line segment with initial point $A(2,-3,4)$ and terminal point $B(-2,1,1)$. Find its magnitude.

Exercise 2 If $\vec{u}=\langle 4,0,3>$ and $\vec{v}=\langle-2,1,5\rangle$, find $| \vec{u} \mid, \vec{u}+\vec{v}, \vec{u}-\vec{v}, 3 \vec{v}, 2 \vec{u}+5 \vec{v}$.

Definition A vector of length 1 is called a unit vector.
Standard unit vectors

Exercise $3 \quad \vec{a}=\vec{i}+2 \vec{j}-3 \vec{k}$ and $\vec{b}=\overrightarrow{4 i}+7 \vec{k}$. Express $2 \vec{a}+3 \vec{b}$ in terms of the standard unit vectors.
Exercise 4 Find the unit vector in the direction of the vector $2 \vec{i}-\vec{j}-2 \vec{k}$.
Exercise 5 Express the vector $2 \vec{i}+\vec{j}-2 \vec{k}$ as a product of its length and direction.
Exercise 6 Find the component form of the unit vector in a plane that makes an angle $\theta=\frac{2 \pi}{3}$ with the positive x axis.

Exercise 7 A $100-\mathrm{lb}$ weight hangs from two wires that form angles of $50^{\circ}$ and $32^{\circ}$, respectively, with the horizontal. Find the tension forces in both wires and their magnitudes.

Exercise 8 Find a vector with representation given by the directed line segment $\overrightarrow{A B}$, where $A(2,3), B(-2,1)$.

Exercise 9 Find a vector that has the same direction as $\langle-2,4,2\rangle$, but length 6 .

Exercise 10 Find the direction of $\vec{P}_{1}$, if $P_{1}(-1,1,5), P_{2}(2,5,0)$.

Exercise 11 If a child pulls a sled through the snow with a force of 50 N exerted at an angle of $38^{\circ}$ above the horizontal, find the horizontal and vertical components of the force.

Exercise 12 Two forces with magnitudes 10 lb and 12 lb act o an object at P . The first force makes an angle of $45^{\circ}$ with the horizontal, while the second force makes an angle of $30^{\circ}$. Find the resulting force acting at P. Find its magnitude and its direction * by finding the angle made with the horizontal).

