12.2 Vectors

Definitions 1. A vector is a directed line segment.

2. Two vectors are equal if they have the same length and direction.

3. A vector is in **standard position** if its initial point is at the origin.

4. If \vec{v} is a two-dimensional vector in the plane equal to the vector with initial point at the origin and terminal point (v_1, v_2) , then the **component form** of \vec{v} is

$$v = < v_1, v_2 >$$

5. If \vec{v} is a three-dimensional vector equal to the vector with initial point at the origin and terminal point (v_1, v_2, v_3) , then the **component form** of \vec{v} is

$$v = < v_1, v_2, v_3 >$$

Notes 1. Given the points $P(x_1, y_1, z_1)$ and $Q(x_2, y_2, z_2)$, the standard position vector equal to \overrightarrow{PQ} is $\vec{v} = \langle x_2 - x_1, y_2 - y_1, z_2 - z_1 \rangle$

2. Two vectors are equal if and only if their standard position vectors are identical.

Vector Algebra

Let $\vec{u} = \langle u_1, u_2, u_3 \rangle$ and $\vec{v} = \langle v_1, v_2, v_3 \rangle$ be vectors with k a scalar.

Definition Addition: Scalar multiplication: $\vec{u} + \vec{v} = \langle u_1 + v_1, u_2 + v_2, u_3 + v_3 \rangle$ $\vec{ku} = \langle ku_1, ku_2, ku_3 \rangle$

Properties	Let $\vec{u}, \vec{v}, \vec{w}$ be vectors and a, b be scalars.			
	1. $\vec{u} + \vec{v} = \vec{v} + \vec{u}$	4. $\vec{u} + (-\vec{u}) = \vec{0}$	7. $a(\vec{bu}) = (ab)\vec{u}$	
	2. $(\vec{u} + \vec{v}) + \vec{w} = \vec{u} + (\vec{v} + \vec{w})$	5. $0\vec{u} = \vec{0}$	8. $a(\vec{u}+\vec{v}) = a\vec{u} + a\vec{v}$	
	3. $\vec{u} + \vec{0} = \vec{u}$	6. $\vec{1u} = \vec{u}$	9. $(a+b)\vec{u} = a\vec{u} + b\vec{u}$	

Exercise 1 Find the vector represented by the directed line segment with initial point A(2,-3,4) and terminal point B(-2,1,1). Find its magnitude.

Exercise 2 If $\vec{u} = <4,0,3>$ and $\vec{v} = <-2,1,5>$, find $|\vec{u}|, \vec{u} + \vec{v}, \vec{u} - \vec{v}, 3\vec{v}, 2\vec{u} + 5\vec{v}$.

Unit Vectors

Definition A vector of length 1 is called a unit vector.

Standard unit vectors

Exercise 3	$\vec{a} = \vec{i} + 2\vec{j} - 3\vec{k}$ and $\vec{b} = 4\vec{i} + 7\vec{k}$. Express $2\vec{a} + 3\vec{b}$ in terms of the standard unit vectors.		
Exercise 4	Find the unit vector in the direction of the vector $2\vec{i} - \vec{j} - 2\vec{k}$.		
Exercise 5	Express the vector $2\vec{i} + \vec{j} - 2\vec{k}$ as a product of its length and direction.		
Exercise 6	Find the component form of the unit vector in a plane that makes an angle $q = \frac{2p}{3}$ with the positive x-axis.		
Exercise 7	A 100-lb weight hangs from two wires that form angles of 50° and 32° , respectively, with the horizontal Find the tension forces in both wires and their magnitudes.		
Exercise 8	Find a vector with representation given by the directed line segment \overrightarrow{AB} , where $A(2,3), B(-2,1)$.		
Exercise 9	Find a vector that has the same direction as $<-2,4,2>$, but length 6.		
Exercise 10	Find the direction of $\overrightarrow{P_1P_2}$, if $P_1(-1,1,5), P_2(2,5,0)$.		
Exercise 11	If a child pulls a sled through the snow with a force of 50 N exerted at an angle of 38° above the horizontal, find the horizontal and vertical components of the force.		
Exercise 12	Two forces with magnitudes 10 lb and 12 lb act o an object at P. The first force makes an angle of 45° with the horizontal, while the second force makes an angle of 30° . Find the resulting force acting at P. Find its magnitude and its direction * by finding the angle made with the horizontal).		