11.3 Polar Coordinates

In-class work:

- 1. Plot the following points: $\left(1, \frac{5\mathbf{p}}{4}\right), \left(2, 3\mathbf{p}\right), \left(2, -\frac{2\mathbf{p}}{3}\right), \left(-3, \frac{3\mathbf{p}}{4}\right)$.
- 2. Convert $\left(2, \frac{p}{3}\right)$ from polar coordinates to Cartesian coordinates.
- 3. Represent (1,-1) in terms of polar coordinates.
- 4. What curve is represented by the polar equation r = 2?
- 5. Sketch the polar curve q = 1.
- 6. a) Sketch the curve with polar equation $r = 2\cos q$.
 - b) Find a Cartesian equation for this curve.
- 7. (Exercise #6/11.4) Find the Cartesian coordinates of the following points given in polar coordinates.
 - b) (1,0) $c) \left(0,\frac{\mathbf{p}}{2}\right)$ $e) \left(-3,\frac{5\mathbf{p}}{6}\right)$
- 8. (Exercise #7/11.4) Find the polar coordinates with $0 \le q < 2p$, $r \ge 0$ of the following points given in Cartesian coordinates:
 - a) (1,1)
- b) (-3,0)
- 9. (Exercise #9/11.4) Find r, q with $0 \le q < 2p, r \le 0$ of the following points given in Cartesian coordinates:
 - a) (3,3)
- 10. (Exercises #28, 32, 37, 38, 42, 51/11.4) Replace the polar equations with equivalent Cartesian equations. Then describe or identify the graph.
 - a) $r \sin q = -1$
- b) $r = -3\sec q$
- $c) r = \frac{5}{\sin q 2\cos q}$
 - $d) r^2 \sin 2\boldsymbol{q} = 2$

e) $r \sin q = \ln r + \ln \cos q$

- f) $r \sin \left(q + \frac{p}{6} \right) = 2$
- 11. (Exercises # 54,55, 58, 61, 66/11.4) Replace the Cartesian equations with equivalent polar equations.
 - a) y = 1
- b) x = y
- c) $x^2 y^2 = 1$
- d) $v^2 = 4x$

e) $(x+2)^2 + (y-5)^2 = 16$