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10.6   

Alternating Series, Absolute and Conditional Convergence 
 
Definition1 An alternating series is a series whose terms are alternately positive and negative, in other words, for  

which 1 0n na a + < , for any n. 
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Theorem  - The Alternating Series Test (Leibniz’s Test) 
  

  If ( )na  is a sequence of positive terms ( 0na >  for any n) such that 
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Exercise 1  Are the following alternating series convergent ? 
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Theorem – The Alternating Series Estimation Theorem 
 

  If ( ) 1
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= −∑ is the sum of an alternating series that satisfies the conditions from Leibniz’s Test 

                                             1n na a +≥  for all  n ( or starting with an index 0n )     and    lim 0nn
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then the error n nR s s= −  satisfies 1n n nR s s a += − ≤  for any n and nR  has the same sign as the first 
unused term . 

 
 
The Theorem says that for the series that satisfy the conditions of the Leibniz’s Test, the size of the error is smaller than 

1na + , which is the absolute value of the first neglected term.  
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Absolute and Conditional Convergence 
 
We saw in Exercise 1a) that the series  
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is convergent.  If we consider the series  
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which is divergent ( p-series with p=1).  
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Definition Let 
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Theorem – The Absolute Convergence Test  
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  ( If a series is absolutely convergent, then it is convergent.) 
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Notes 

1. The Converse of the Absolute Convergence Test is not true. There are convergent series that are not 

absolutely convergent, for example
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2. For the series with positive terms, the notions of convergence and absolute convergence coincide.  
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Exercise 2 Test the series ( )
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Exercise 3 Determine whether 
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Theorem – The Rearrangement for Absolute Convergent Series 
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Notes 1. We cannot rearrange the terms of a conditionally convergent series and expect the new series to be the same as  

    the original one. When we are using a conditionally convergent series, the terms must be added together in the    
    order they are given to obtain a correct result. 

 
 2. The above theorem guarantees that the terms of an absolutely convergent series can be summed in any order   
                 without affecting the result.   
 


