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Definition1

10.6
Alternating Series, Absolute and Conditional Convergence

An alternating series is a series whose terms are aternately positive and negative, in other words, for
which a.a.,, <0, for any n.
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An dternating seriesis a series of the form A (' 1) U, or A (' 1) U, where u, =|a,|.
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Theorem - The Alternating Series Test (Leibniz's Test)

Exercise 1l

If (a,) isasequence of positive terms (&, >0 for any n) such that

a) a, 3 a, fordl n(orsartingwith anindex n,)
b) lima, =0
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then the series Q. (' 1) a, is convergent.
n=1

Are the following aternating series convergent ?
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Theorem — The Alternating Series Estimation Theorem
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If s=§ ( 1)”+legq is the sum of an aternating series that satisfies the conditions from Leibniz’s Test

n=1

a, 3 a, fordl n(orgartingwithanindex n,) and Ii®r9an =0

thentheerror R, =s- 5, stisfies|R |=|s- s,|£ &,,, forany nand R, hasthe same sign asthe first
unused term .

The Theorem says that for the series that satisfy the conditions of the Leibniz's Test, the size of the error is smaller than
a,.;, which is the absolute value of the first neglected term.



Absolute and Conditional Convergence

We saw in Exercise 14) that the series
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is convergent. If we consider the series
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which is divergent ( p-series with p=1).
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Weseethat A &, is convergent while a |an| is divergent.
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Definition Let A &, aseries
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1. We say that the series a a, is absolutely convergent (AC) if the series a |an| IS convergent.
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2. We say that the series a a, is conditionally convergent ( or converges conditionally) (CC) if
n=1
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a, is convergent while a |an| is divergent.
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>
11

g (_ 1)n+1
Examples a >~ converges absolutely
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converges conditionally

Theorem — The Absolute Convergence Test
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If A |an| converges, then A &, converges.
n=1 n=1

(If aseriesis absolutely convergent, then it is convergent.)




Notes
1. The Converse of the Absolute Convergence Test is not true. There are convergent series that are not
g ( )n+l
absolutely convergent, for example d =~ .
n=1
2. For the series with positive terms, the notions of convergence and absol ute convergence coincide.
[}
3. To decide the nature of the series A | a, | we can apply al the convergence tests learned for serieswith
n=1
positive terms.
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4. Aswe have seen, if a |an| converges, then a &, converges. In general, we will not be able to decide the
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nature of Al a, if a |an | diverges.
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However, if the series a |an | isdivergent by the Ratio Test or Root Test, then the series
n=1
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A &, divergesaswell (aslima,  0).
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Exercise2 Test the series A (' 1) E for absolute convergence.
n=1
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Exercise3 Determine whether é —— isconvergent or divergent.
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Theorem — The Rearrangement for Absolute Convergent Series
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If A &, converges absolutely, and b,b,,..h,,...isany arrangement of the sequence (an)
n=1
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then A bn converges absolutely and aa=a bn .
n=1 n=1 n=1

Notes 1. We cannot rearrange the terms of a conditionally convergent series and expect the hew series to be the same as
the original one. When we are using a conditionally convergent series, the terms must be added together in the
order they are given to obtain a correct result.

2. The above theorem guarantees that the terms of an absolutely convergent series can be summed in any order
without affecting the result.



