10.2 Infinite Series

Definition 1 Given an infinite sequence $\left\{a_{n}\right\}$, an expression of the form

$$
a_{1}+a_{2}+a_{3}+\ldots+a_{n}+\ldots
$$

is an infinite series.

Definition 2 Given a series $\sum_{n=1}^{\infty} a_{n}$, the sums of the form

$$
s_{1}=a_{1}
$$

$$
s_{2}=a_{1}+a_{2}
$$

$$
s_{3}=a_{1}+a_{2}+a_{3}
$$

and, in general,

$$
s_{n}=a_{1}+a_{2}+\ldots+a_{n}
$$

are called the partial sums of the series.
$\underline{\text { Definition } 3}$ Given a series $\sum_{n=1}^{\infty} a_{n}=a_{1}+a_{2}+a_{3}+\ldots+a_{n}+\ldots$, let s_{n} denote its nth partial sum:

$$
s_{n}=\sum_{k=1}^{n} a_{k}=a_{1}+a_{2}+\ldots+a_{n}
$$

If the sequence $\left\{s_{n}\right\}$ is convergent and $\lim _{n \rightarrow \infty} s_{n}=s$ exists as a real number, then the series $\sum_{n=1}^{\infty} a_{n}$ is called convergent and we write

$$
\sum_{n=1}^{\infty} a_{n}=s
$$

The number s is called the sum of the series. If the sequence $\left\{s_{n}\right\}$ is divergent, then the series is called divergent.

Note: The sum of a series is the limit of the sequence of partial sums. So when we write $\sum_{n=1}^{\infty} a_{n}=s$ we mean that by adding sufficiently many terms of the series we can get as close as we like to the number s.

$$
\sum_{n=1}^{\infty} a_{n}=\lim _{n \rightarrow \infty} \sum_{k=1}^{n} a_{k}
$$

Definition 4 A series of the form

$$
a+a r+a r^{2}+\ldots+a r^{n-1}+\ldots=\sum_{n=1}^{\infty} a r^{n-1}
$$

in which a and r are fixed real numbers and $a \neq 0$ is called a geometric series. (Each term is obtained from the preceding one by multiplying it by the common ration r)

When is a geometric series convergent?

Exercise 1 Show that $2.3 \overline{17}=2.3171717 \ldots$ is a rational number (a ratio of integers).

Exercise 2 Find the sum of the series $\sum_{n=1}^{\infty} x^{n}$, where $|x|<1$.

Theorem If the series $\sum_{n=1}^{\infty} a_{n}$ is convergent, then $\lim _{n \rightarrow \infty} a_{n}=0$.

Proof

Note With any series $\sum a_{n}$ we associate two sequences: the sequence $\left\{s_{n}\right\}$ of its partial sums and the sequence $\left\{a_{n}\right\}$ of its terms. If $\sum a_{n}$ is convergent, then $\lim _{n \rightarrow \infty} s_{n}=s$ (the sum of the series) and, according to the above Theorem, $\lim _{n \rightarrow \infty} a_{n}=0$.

Note The converse of the above Theorem is not true in general. If $\lim _{n \rightarrow \infty} a_{n}=0$, we cannot conclude that $\sum a_{n}$ is convergent.

Theorem (The nth-Term Test for Divergence)
If $\lim _{n \rightarrow \infty} a_{n}$ does not exist or if $\lim _{n \rightarrow \infty} a_{n} \neq 0$, then the series $\sum_{n=1}^{\infty} a_{n}$ is divergent.

Exercise 3 Show that the series $\sum_{n=1}^{\infty} \frac{n^{2}}{5 n^{2}+4}$ diverges.

Theorem
If $\sum a_{n}$ and $\sum b_{n}$ are convergent series, then so are the series $\sum k a_{n}$ (where k is a constant), $\sum\left(a_{n}+b_{n}\right)$, and $\sum\left(a_{n}-b_{n}\right)$, and

$$
\text { 1. } \sum_{n=1}^{\infty} k a_{n}=k \sum_{n=1}^{\infty} a_{n} \quad \text { 2. } \sum_{n=1}^{\infty}\left(a_{n}+b_{n}\right)=\sum_{n=1}^{\infty} a_{n}+\sum_{n=1}^{\infty} b_{n} \quad \text { 3. } \sum_{n=1}^{\infty}\left(a_{n}-b_{n}\right)=\sum_{n=1}^{\infty} a_{n}-\sum_{n=1}^{\infty} b_{n}
$$

Corollaries

1. If $\sum_{n=1}^{\infty} a_{n}$ is divergent, then $\sum_{n=1}^{\infty} k a_{n}$ is divergent.
2. If $\sum a_{n}$ converges and $\sum b_{n}$ diverges, then $\sum_{n=1}^{\infty}\left(a_{n}+b_{n}\right)$ and $\sum_{n=1}^{\infty}\left(a_{n}-b_{n}\right)$ both diverge.

More Exercises 10.1

Which of the sequences $\left\{a_{n}\right\}$ converge, and which diverge? Find the limit of each convergent sequence.
\#44/10.1
\#46/10.1 $\quad a_{n}=\frac{\sin ^{2} n}{2^{n}}$
\#48/10.1 $\quad a_{n}=\frac{3^{n}}{n^{3}}$
\#54/10.1 $\quad a_{n}=\left(1-\frac{1}{n}\right)^{n}$
\#88/10.1 $\quad a_{n}=\frac{1}{\sqrt{n^{2}-1}-\sqrt{n^{2}+n}} \quad$ \#90/10.1 $\quad a_{n}=\int_{1}^{n} \frac{1}{x^{p}} d x, p>1$
\#92/10.1 Assume that the sequence converges. Find its limit.

$$
a_{1}=-1, \quad a_{n+1}=\frac{a_{n}+6}{a_{n}+2}
$$

\#112/10.1 Determine if the sequence is monotonic and if it is bounded.

$$
a_{n}=\frac{(2 n+3)!}{(n+1)!}
$$

More Exercises 10.2

Use the n th-Term Test for divergence to show that the series is divergent, or state that the test is inconclusive.
\#28/10.2 $\quad \sum_{n=1}^{\infty} \frac{n(n+1)}{(n+2)(n+3)} \quad$ \#30/10.2 $\quad \sum_{n=1}^{\infty} \frac{n}{n^{2}+3}$
\#36/10.2 Find a formula for the nth partial sum of the series and use it to determine if the series converges or diverges. If the series converges, find its sum.

$$
\sum_{n=1}^{\infty}\left(\frac{3}{n^{2}}-\frac{3}{(n+1)^{2}}\right)
$$

\#42/10.2 Find the sum of the series $\sum_{n=1}^{\infty} \frac{6}{(2 n-1)(2 n+1)}$.

Which series converge, and which diverge? Give reasons for your answers. If a series converges, find its sum.
\#51/10.2
$\sum_{n=1}^{\infty}(-1)^{n+1} \frac{3}{2^{n}}$
\#52/10.2 $\sum_{n=1}^{\infty}(-1)^{n+1} n$
\#58/10.2 $\quad \sum_{n=1}^{\infty} \frac{1}{x^{n}},|x|>1$
\#64/10.2 $\sum_{n=1}^{\infty} \frac{2^{n}+4^{n}}{3^{n}+4^{n}}$
\#65/10.2 $\quad \sum_{n=1}^{\infty} \ln \left(\frac{n}{n+1}\right)$
\#68/10.2 $\quad \sum_{n=1}^{\infty} \frac{e^{n \pi}}{\pi^{n e}}$
\#70/10.2 Write out the first few terms of the series to find a and r, and find the sum of the series. Then express the inequality $|r|<1$ in terms of x and find the values of x for which the inequality holds and the series converges.

$$
\sum_{n=0}^{\infty}(-1)^{n} x^{2 n}
$$

\#76/10.2 Find the value of x for which the given geometric series converges. Also, find the sum of the series for those values of x.

$$
\sum_{n=0}^{\infty}\left(-\frac{1}{2}\right)^{n}(x-3)^{n}
$$

Exercise $1 \quad$ If the nth partial sum of a series $\sum_{n=1}^{\infty} a_{n}$ is $s_{n}=\frac{n-1}{n+1}$, find a_{n} and $\sum_{n=1}^{\infty} a_{n}$.
Exercise 2 A certain ball has the property that each time it falls from a height h onto a hard, level surface, it rebounds to a height $r h$, where $0<r<1$. Suppose that the ball is dropped from an initial height of H meters.
a) Assuming that the ball continues to bounce indefinitely, find the total distance that it travels.
b) Calculate the total time that the ball travels.
(we know that a ball falls $h=\frac{1}{2} g t^{2}$ meters in t seconds, where g is the gravitational acceleration.)
Exercise 3 A right triangle at C, ABC is given with $\angle A=\theta$ and $|A C|=b$. CD is drawn perpendicular to AB, De is drawn perpendicular to BC, EF is drawn perpendicular to AB , and this process is continued indefinitely. Find the total length of all the perpendiculars

$$
|C D|+|D E|+|E F|+|F G|+\ldots
$$

Exercise 4 The Sierpinski carpet. A carpet is constructed by removing the center one-ninth of a square of side 1, then removing the centers of the eight smaller remaining squares, and so on. Show that the sum of the areas of the removed squares is 1 . This implies that the Sierpinski carpet has area 0.

