10.1 Sequences

A sequence is a list of numbers written in a given order:

$$
a_{1}, a_{2}, \ldots a_{n}, \ldots
$$

Definition 1 A sequence of real numbers is a function

$$
\begin{aligned}
& f: \mathbb{N} \rightarrow \mathbb{R} \\
& f(n)=a_{n}, \forall n \in \mathbb{N}
\end{aligned}
$$

Examples of sequences

- Some sequences can be defines by giving a formula for the nth term

1) $\left(\frac{n}{n+1}\right)_{n=1}^{\infty}$
2) $(\sqrt{n-3})_{n=3}^{\infty}$

- Some sequences don't have a simple defining equation

3) $\left\{p_{n}\right\}$, where p_{n} is the population of the world on January $1^{\text {st }}$ in the year n
4) $\left\{a_{n}\right\}$, where a_{n} is the digit in the nth decimal place of the number e

- Some sequences can be defined recursively

5) The Fibonacci sequence $\left\{f_{n}\right\}$, where $f_{1}=1, f_{2}=1$ and $f_{n}=f_{n-1}+f_{n-2}$, for any $n \geq 3$

This sequence arose when the Italian mathematician ($13^{\text {th }}$ century) solved a problem concerning the breeding of rabbits.

Definition 2 Bounded Sequences

- A sequence $\left(a_{n}\right)$ is bounded above if and only if there is $M \in \mathbb{R}$ such that $a_{n} \leq M, \forall n$
- A sequence $\left(a_{n}\right)$ is bounded below if and only if there is $m \in \mathbb{R}$ such that $a_{n} \geq m, \forall n$
- A sequence $\left(a_{n}\right)$ is bounded if and only if it is bounded below and above, that is iff there is $m \in \mathbb{R}$ and $M \in \mathbb{R}$ such that $m \leq a_{n} \leq M, \forall n$
- A sequence $\left(a_{n}\right)$ is unbounded if it is not bounded, that is, iff
outside any closed interval $[\alpha, \beta]$ there is at least one term of the sequence.
Note that a sequence $\left(a_{n}\right)$ is not bounded if it is not bounded above or it is not bounded below or both.

Examples

1) $x_{n}=(-1)^{n}$
2) $a_{n}=\frac{1}{n}$
3) $b_{n}=2^{n}$
4) $c_{n}=-n$
5) $y_{n}=(-1)^{n-1} n$

Definition 3 Increasing/Decreasing Sequences

- A sequence $\left(a_{n}\right)$ is increasing if and only if $a_{n}<a_{n+1}, \forall n \geq 1$.
- A sequence $\left(a_{n}\right)$ is decreasing if and only if $a_{n}>a_{n+1}, \forall n \geq 1$.
- A sequence $\left(a_{n}\right)$ is nondecreasing if and only if $a_{n} \leq a_{n+1}, \forall n \geq 1$.
- A sequence $\left(a_{n}\right)$ is nonincreasing if and only if $a_{n} \geq a_{n+1}, \forall n \geq 1$.
- A sequence is monotonic if and only if it is either nondecreasing or nonincreasing.

Note: Any increasing sequence is nondecreasing.
Any decreasing sequence is nonincreasing.

Examples

1) $a_{n}=1-\frac{1}{n}$
2) $b_{n}=\frac{1}{n^{2}}$
3) $c_{n}=(-1)^{n}$

The Limit of a Sequence

Definition 4 A sequence $\left(a_{n}\right)$ has the limit $L \in \mathbb{R}$ if and only if any neighborhood of L contains all the terms, except, maybe, a finite number of them.

In other words, $\lim _{n \rightarrow \infty} a_{n}=L$ if and only if we can make the terms a_{n} as close to L as we like by taking n sufficiently large.

Definition 5 A sequence $\left(a_{n}\right)$ is convergent if and only if $\lim _{n \rightarrow \infty} a_{n}=L \in \mathbb{R}$.

A sequence $\left(a_{n}\right)$ is divergent if and only if $\lim _{n \rightarrow \infty} a_{n}$ does not exist (in \mathbb{R}).

Property

$$
\lim _{n \rightarrow \infty} a_{n}=L \text { if and only if } \lim _{n \rightarrow \infty}\left|a_{n}-L\right|=0 .
$$

Examples

1) $\left(\frac{1}{n}\right)_{n=1}^{\infty}$
2) $x_{n}=(-1)^{n}$

The limit of a sequence is unique.

By adding or eliminating a finite number of terms,
a) a convergent sequence remains convergent
b) a divergent sequence remains divergent.

By changing the order of the terms

a) of a convergent sequence we obtain another convergent sequence with the same limit.
b) of a divergent sequence we obtain another divergent sequence.

Theorems

Any convergent sequence is bounded.

Any nonbounded sequence is divergent.

Examples

1) $a_{n}=n$
2) $b_{n}=-n$
3) $c_{n}=(-1)^{n}$

Theorem (The Monotonic Sequence Theorem)

If $\left(a_{n}\right)$ is bounded and monotonic, then $\left(a_{n}\right)$ is convergent.

Operations with Convergent Sequences

Theorem
Let $\left(a_{n}\right),\left(b_{n}\right)$ sequences of real numbers and $\lim _{n \rightarrow \infty} a_{n}=a, \lim _{n \rightarrow \infty} b_{n}=b$. Then:

1) $\lim _{n \rightarrow \infty}\left(a_{n} \pm b_{n}\right)=a \pm b$
2) $\lim _{n \rightarrow \infty}\left(k a_{n}\right)=k a, \forall k \in \mathbb{R}$
3) $\lim _{n \rightarrow \infty}\left(a_{n} b_{n}\right)=a b$
4) $\lim _{n \rightarrow \infty} \frac{1}{a_{n}}=\frac{1}{a}$ if $a \neq 0$
5) $\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=\frac{a}{b}$ if $b \neq 0$
6) $\lim _{n \rightarrow \infty} a_{n}^{p}=a^{p}$ if $p>0, a_{n}>0$.

Theorem (The Sandwich Theorem for Sequences)

$$
\begin{aligned}
& \text { If }\left(a_{n}\right),\left(b_{n}\right) \text {, and }\left(c_{n}\right) \text { are sequences of real numbers and } \\
& \qquad \begin{array}{l}
a_{n} \leq b_{n} \leq c_{n}, \text { for any } n \geq n_{0}\left(\text { beyond some index } n_{0}\right) \text { and } \\
\\
\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} c_{n}=L \in \mathbb{R}
\end{array}
\end{aligned}
$$

then
$\lim _{n \rightarrow \infty} b_{n}=L$.

Corollary

$$
\text { If } \lim _{n \rightarrow \infty}\left|a_{n}\right|=0 \text {, then } \lim _{n \rightarrow \infty} a_{n}=0
$$

Proof

Theorem (The Continuous Function Theorem for Sequences)
If $\left(a_{n}\right)$ is a sequence of real numbers and $\lim _{n \rightarrow \infty} a_{n}=L$, where L is a real number and f is a continuous function at L, defined for all a_{n}, then

$$
\lim _{n \rightarrow \infty} f\left(a_{n}\right)=f\left(\lim _{n \rightarrow \infty} a_{n}\right)=f(L)
$$

Theorem (about using l'Hopitais Rule)
If f is a function defined for all $x \geq n_{0}$,
$\left(a_{n}\right)$ is a sequence of real numbers, $f(n)=a_{n}$, for any $n \geq n_{0}$ and $\lim _{x \rightarrow \infty} f(x)=L$,
then $\lim _{n \rightarrow \infty} a_{n}=L$.

Exercise 1 Find $\lim _{n \rightarrow \infty} \frac{\ln n}{n}$.

Let $\left(a_{n}\right)$ be a sequence of real numbers.

1) If $\left(u_{n}\right)_{n \geq 0}, \lim _{n \rightarrow \infty} u_{n}=\infty$, and $a_{n} \geq u_{n}, \forall n \geq n_{0}$ (n_{0} fixed), then $\lim _{n \rightarrow \infty} a_{n}=\infty$.
2) If $\left(v_{n}\right)_{n \geq 0}, \lim _{n \rightarrow \infty} v_{n}=-\infty$, and $a_{n} \leq v_{n}, \forall n \geq n_{0}$ (n_{0} fixed), then $\lim _{n \rightarrow \infty} a_{n}=-\infty$.

Theorem
Let $\left(a_{n}\right)_{n \geq 0}$ and $\left(b_{n}\right)_{n \geq 0}$ sequences of real numbers.

1) If $a_{n} \rightarrow \infty$ and $b_{n} \rightarrow b$, where $b \in \mathbb{R}$, then $\lim _{n \rightarrow \infty}\left(a_{n}+b_{n}\right)=\infty$

$$
\lim _{n \rightarrow \infty}\left(a_{n} b_{n}\right)= \begin{cases}\infty & \text { if } b>0 \\ -\infty & \text { if } b<0\end{cases}
$$

2) If $a_{n} \rightarrow-\infty$ and $b_{n} \rightarrow b$, where $b \in \mathbb{R}$, then $\lim _{n \rightarrow \infty}\left(a_{n}+b_{n}\right)=-\infty$

$$
\lim _{n \rightarrow \infty}\left(a_{n} b_{n}\right)= \begin{cases}-\infty & \text { if } b>0 \\ \infty & \text { if } b<0\end{cases}
$$

3) If $a_{n} \rightarrow \infty$ and $b_{n} \rightarrow \infty$, then $\lim _{n \rightarrow \infty}\left(a_{n}+b_{n}\right)=\infty$

$$
\lim _{n \rightarrow \infty}\left(a_{n} b_{n}\right)=\infty .
$$

4) If $a_{n} \rightarrow-\infty$ and $b_{n} \rightarrow-\infty$, then $\lim _{n \rightarrow \infty}\left(a_{n}+b_{n}\right)=-\infty$

$$
\lim _{n \rightarrow \infty}\left(a_{n} b_{n}\right)=\infty
$$

5) If $a_{n} \rightarrow \infty$ and $b_{n} \rightarrow-\infty$, then $\lim _{n \rightarrow \infty}\left(a_{n} b_{n}\right)=-\infty$.

Indeterminate Cases $\infty-\infty, \infty \cdot 0, \frac{0}{0}, \frac{\infty}{\infty}, 0^{0}, \infty^{0}, 1^{\infty}$

Theorem
If $a_{n} \rightarrow \infty$, then $\frac{1}{a_{n}} \rightarrow 0$.
If $a_{n} \rightarrow-\infty$, then $\frac{1}{a_{n}} \rightarrow 0$.
If $b_{n} \rightarrow 0$ and $b_{n}>0$ for any $n \geq n_{0}$, then $\frac{1}{b_{n}} \rightarrow \infty$.
If $b_{n} \rightarrow 0$ and $b_{n}<0$ for any $n \geq n_{0}$, then $\frac{1}{b_{n}} \rightarrow-\infty$.

