Sections 4.1 \& 4.2 - Theorems

The Extreme Value Theorem (4.1)

This theorem gives conditions under which a function is guaranteed to have extreme values.

Hypothesis: $\quad f$ continuous on a closed interval $[a, b]$
Conclusion: $\quad f$ attains both an absolute maximum and an absolute minimum in $[a, b]$.

Examples of functions that satisfy the hypothesis:

Maximum and minimum
at interior points

Maximum at interior point, minimum at endpoint

Minimum at interior point, maximum at endpoint

FIGURE 4.3 Some possibilities for a continuous function's maximum and minimum on a closed interval $[a, b]$.

Example of a function that does not satisfy the hypothesis:

FIGURE 4.4 Even a single point of discontinuity can keep a function from having either a maximum or minimum value on a closed interval. The function

$$
y= \begin{cases}x, & 0 \leq x<1 \\ 0, & x=1\end{cases}
$$

is continuous at every point of $[0,1]$ except $x=1$, yet its graph over $[0,1]$ does not have a highest point.

Fermat's Theorem (The First Derivative Theorem for Local Extreme Values) (4.1)
This theorem says that a function's derivative is always zero at an interior point where the function has a local extreme value and the derivative is defined.

Hypothesis: $\quad f$ is a function
\boldsymbol{c} is an interior point of the domain of f
f has a local minimum or maximum value at c
$f^{\prime}(c)$ exists
Conclusion: $\quad f^{\prime}(c)=0$

Rolle's Theorem(4.2)

This theorem says that between any two points where a differentiable function crosses a horizontal line there is at least one point on the curve where the tangent is horizontal.

Hypothesis:	f continuous on $[a, b]$
	f differentiable on (a, b)
	$f(a)=f(b)$
Conclusion:	$\exists c \in(a, b)$ such that $f^{\prime}(c)=0$

(a)

(b)

FIGURE 4.10 Rolle's Theorem says that a differentiable curve has at least one horizontal tangent between any two points where it crosses a horizontal line. It may have just one (a), or it may have more (b).

The Intermediate Value Theorem for Continuous Functions (2.6)
A function is said to have the Intermediate Value Property if whenever it takes on two values, it takes on all the values in between.

Hypothesis: $\quad f$ continuous on a closed interval $[a, b]$
Conclusion: $\quad f$ takes on every value between $f(a)$ and $f(b)$

The Mean Value Theorem (4.2)
This theorem says that if a function is differentiable, then there is a point somewhere between A and B where the tangent line is parallel to the secant line AB .

Hypothesis: $\quad f$ continuous on a closed interval $[a, b]$
f differentiable on (a, b)
Conclusion: $\exists c \in(a, b)$ such that $f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}$

Section 4.1 - Exercises

1. (4.1-\#1-8)

Find the extreme values and where they occur.

In Exercises 7-10, find the extreme values and where they occur.
7.

8.

2. (4.1-\#71)

What is the largest possible area for a right triangle whose hypotenuse is 5 cm long?
3. (4.1-\# 68)

One tower is 50 ft high and another is 30 ft high. The towers are 150 ft apart. A guy wire is to run from point A to the top of each tower.
a) Locate point A so that the total length of guy wire is minimal.

4. (4.1-\# 65) Supertankers off-load oil at a docking facility 4 mi offshore. The nearest refinery is 9 mi east of the shore point nearest the docking facility. A pipeline must be constructed connecting the docking facility with the refinery. The pipeline costs $\$ 300,000$ per mile if constructed underwater and $\$ 200,000$ per mile if overland.
a) Locate point B to minimize the cost of the construction.

