Section 2.7 - Derivatives and Rates of Change - Part II
Section 2.8 - The Derivative as a Function

Derivatives

In the previous section we defined the slope of the tangent to a curve with equation $y=f(x)$ at the point $(a, f(a))$ to be
\qquad

We also saw that the velocity of an object with position function $s=f(t)$ at time $t=a$ is

In fact, limits of the form $\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}$ arise whenever we calculate a rate of change in any of the sciences or engineering, such as a rate of reaction in chemistry or a marginal cost in economics. Since this type of limit occurs so widely, it is given a special name and notation.

Definition 1 The derivative of a function \boldsymbol{f} at $x=a$, denoted by $f^{\prime}(a)$, is

$$
\begin{equation*}
f^{\prime}(a)=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h} \quad \text { (1) } \quad \text { or } f^{\prime}(a)=\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a} \tag{1}
\end{equation*}
$$

if this limit exists.

Notes:

- $f^{\prime}(a)$ is the slope of the tangent to the curve $y=f(x)$ at the point $(a, f(a))$
- $f^{\prime}(a)$ is the instantaneous rate of change of $y=f(x)$ with respect to x when $x=a$
- If we sketch the curve $y=f(x)$, when the derivative is large (and therefore the curve is steep), the y values change rapidly. When the derivative is small, the curve is relatively flat, and the y-values change slowly.
- In particular, if $s=f(t)$ is the position of a particle that moves along a straight line, then $f^{\prime}(a)$ is the rate of change of the displacement s with respect to the time t. In other words, $f^{\prime}(a)$ is the velocity of the particle at time $t=a$. The speed of the particle is the absolute value of the velocity.

Exercise 1 Find the derivative of the function $f(t)=2 t^{3}+t$ at the number a.

The Derivative as a Function

Now we change our point of view and let the number \underline{a} vary. If we replace a in the equation (1) above we obtain

$$
\begin{equation*}
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \tag{3}
\end{equation*}
$$

For any number x for which this limits exists, we assign to x the number $f^{\prime}(x)$. So we can regard f^{\prime} as a new function, called the derivative of f and defined by equation (3). The value of f^{\prime} at $x, f^{\prime}(x)$, can be interpreted geometrically as the slope of the tangent to the graph of f at the point $(x, f(x))$.

Notes:

- The function f^{\prime} is called the derivative of f because it has been "derived" from f by the limiting operation in equation (3).
- The domain of f^{\prime} is the set $\left\{x \mid f^{\prime}(x) \in \mathbb{R}\right\}$ and it may be smaller than the domain of f.
- If $f^{\prime}(x)$ exists, we say that \boldsymbol{f} has a derivative at \boldsymbol{x} or that \boldsymbol{f} is differentiable at \boldsymbol{x}.
- If f^{\prime} exists at any x in the domain of f, we say that \boldsymbol{f} is differentiable.
- The process of calculating a derivative is called "differentiation".

Exercise 2 Differentiate $f(x)=\frac{x}{x-1}$.

Exercise 3 a) If $f(x)=x^{3}-x$, find a formula for $f^{\prime}(x)$.
b) Illustrate by comparing the graphs of f and f^{\prime}.

Exercise 4 If $f(x)=\sqrt{x+5}$, find the derivative of f. State the domain of f^{\prime}.

Differentiable on an Interval; One -sided Derivatives

Definition 2 1) A function f is differentiable on an open interval $(a, b) \quad$ or (a, ∞) or $(-\infty, a)$ or $(-\infty, \infty)]$ if and only if $f^{\prime}(x)$ exists for any x in the interval.
2) A function f is differentiable on a closed interval $[a, b]$ if and only if it is differentiable on (a, b) and if the right-hand derivative at a and the left-hand derivative at b exist.

$$
f_{+}^{\prime}(a)=\lim _{h \rightarrow 0^{+}} \frac{f(a+h)-f(a)}{h} \quad f_{-}^{\prime}(b)=\lim _{h \rightarrow 0^{+}} \frac{f(b+h)-f(b)}{h}
$$

Exercise $5 \quad$ Where is the function $f(x)=|x|$ differentiable? Give a formula for f^{\prime}. Illustrate with the graphs of f and f^{\prime}.

Exercise 6

Match the functions graphed in \#27-30 with the derivatives graphed in the accompanying figures a) - d).

Exercise 7

a) The graph of the accompanying figure is made of line segments joined end to end. At which points of the interval $[-4,6]$ is f^{\prime} not defined? Give reasons for your answer.
b) Graph the derivative of f.

Exercise 8

Compare the right-hand and left-hand derivatives to show that the functions are not differentiable at the point P .

Other notations

If we use the traditional notation $y=f(x)$ to indicate that the independent variable is x and the dependent variable is y, then some common alternative notations for the derivative are as follows:

$$
f^{\prime}(x)=y^{\prime}=\frac{d y}{d x}=\frac{d f}{d x}=\frac{d}{d x} f(x)=D f(x)=D_{x} f(x)
$$

The symbols D and $d / d x$ are called differentiation operators because they indicate the operation of differentiation, which is the process of calculating a derivative.

The symbol $d y / d x$, which was introduced by Leibniz, should not be regarded as a ratio (for the time being); it is a synonym for $f^{\prime}(x)$.

If we want to indicate the value of a derivative $d y / d x$ in Leibniz notation at a specific number a, we use the notation

$$
\left.\frac{d y}{d x}\right|_{x=a} \text { which is a synonym for } f^{\prime}(a)
$$

Theorem If a function is differentiable at $x=a$, then f is continuous at $x=a$.

Proof

Notes 1) The converse is false: a function could be continuous, but not differentiable
2)The contrapositive is always true: if a function is not continuous at $x=a$, then it is not differentiable at $x=a$

In conclusion, when does a function not have a derivative at a point?

1) a corner, where the one-sided derivatives differ
2) a cusp, where the slope of the tangent approaches ∞ from one side and $-\infty$ from the other
3) a vertical tangent, where the slope of the tangent approaches ∞ from both sides or approaches $-\infty$ from both sides
4) a discontinuity

Higher Derivatives

If f is a differentiable function, then its derivative f^{\prime} is also a function, so f^{\prime} may have a derivative of its own, denoted by $\left(f^{\prime}\right)^{\prime}=f^{\prime \prime}$. This new function $f^{\prime \prime}$ is called the second derivative of f.
Using Leibniz notation, we write $\frac{d}{d x}\left(\frac{d y}{d x}\right)=\frac{d^{2} y}{d x^{2}}$.

Exercise 9 Let $g(x)=1+\sqrt{4-x}$. Differentiate the function. Then find an equation of the tangent line at $(3,2)$.

Exercise 10 The figure shows the graph of a function over a closed interval. At what points does the function appear to be:
a) differentiable?
b) Continuous but not differentiable?
c) Neither continuous nor differentiable.
46.

Exercise 11 Does any tangent to the curve $y=\sqrt{x}$ cross the x-axis at $x=-1$? If so, find an equation for the line and point of tangency. If not, why not?

Exercise 12 Show that $f(x)=\left\{\begin{array}{ll}x^{2} \sin \frac{1}{x}, & x \neq 0 \\ 0, & x=0\end{array}\right.$ is differentiable at $x=0$ and find $f^{\prime}(0)$.

Exercise 13 a) If $g(x)=x^{\frac{2}{3}}$, show that $g^{\prime}(0)$ does not exist.
b) If $a \neq 0$, find $g^{\prime}(a)$.
c) Show that the graph has a vertical tangent line at $(0,0)$

Answers:1) $6 a^{2}+1$; 2) $\frac{-1}{(x-1)^{2}}$; 3) $3 x^{2}-1$; 4) $\frac{1}{2 \sqrt{x+5}}$; 5) all x except 0 ; 6) $27-\mathrm{b}, 28-\mathrm{a}, 29-\mathrm{d}, 30-\mathrm{c}$; 9b) $x+2 y=7$; 11) $y-1=\frac{1}{2}(x-1)$; 12) $f^{\prime}(0)=0$.

Solutions

