PART I Sections 2.2 & 2.3 – Limit of a Function and Limit Laws

In section 2.1 we saw how limits arise when we want to find the tangent to a curve or the velocity of an object. Now we turn our attention to limits in general and methods for computing them. We will begin with an informal definition of limit .

Example 1 Let's investigate the behavior of the function ______ for values of *x* near 2.

Similarly, we define the notion of a limit for an arbitrary function.

<u>Definition 1</u> If *f* is a function defined on an open interval about *a*, except possibly at *a* itself, we write $\lim_{x \to a} f(x) = L$ and say "the limit of f(x), as *x* approaches *a*, equals *L*" if we can make the values of f(x) arbitrarily close to *L* (as close to *L* as we like) by taking *x* sufficiently close to *a* (on either side of *a*) but not equal to *a*.

Roughly speaking, this says that the values of f(x) become closer and closer to the number *L* as *x* approaches the number *a* (from either side of *a*) but $x \neq a$.

Notes: - In finding the limit of f(x) as $x \to a$ we never consider x = a.

- f(x) need not even be defined when x = a

- The only thing that matters is how *f* is defined *near* a

<u>Example 2</u> Here we have three functions. This example illustrates that the limit of a function does not depend on how the function is defined at the point being approached.

Exercise 1

For the function g(x) graphed here, find the following limits or explain why they do not exist.

a)
$$\lim_{x \to 1} g(x)$$

b) $\lim_{x \to 2} g(x)$
c) $\lim_{x \to 3} g(x)$
d) $\lim_{x \to 2.5} g(x)$

Theorem – Limit Laws (2.3)

This theorem shows us how to calculate limits of functions that are arithmetic combinations of functions having known limits.

If $\lim_{x \to a} f(x)$ and $\lim_{x \to a} g(x)$ exist, then		
1. Sum Rule:	$\lim_{x \to a} (f(x) \pm g(x)) = \lim_{x \to a} f(x) \pm \lim_{x \to a} g(x)$	
2. Product Rule:	$\lim_{x \to a} (f(x) \cdot g(x)) = \lim_{x \to a} f(x) \cdot \lim_{x \to a} g(x)$	
3. Quotient Rule:	$\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{\lim_{x \to a} f(x)}{\lim_{x \to a} g(x)}, \lim_{x \to a} g(x) \neq 0$	
4. Constant Multiple Rule:	$\lim_{x \to a} (c \cdot f(x)) = c \cdot \lim_{x \to a} f(x), c \in \mathbb{R}$	
5. Power Rule:	$\lim_{x \to a} \left[f(x) \right]^n = \left[\lim_{x \to a} f(x) \right]^n$, where <i>n</i> is a positive integer	
6. Root Rule:	$\lim_{x \to a} \sqrt[n]{f(x)} = \sqrt[n]{\lim_{x \to a} f(x)}, \text{ where } n \text{ is a positive integer.}$ If <i>n</i> is even, we assume that $\lim_{x \to a} f(x) > 0$	

Special Limits (2.3)

The Constant Function $\lim_{x \to a} c = c$ The Identity Function $\lim_{x \to a} x = a$ Direct Substitution PropertyIf f(x) is a polynomial or a rational function and a is in the domain of f, then $\lim_{x \to a} f(x) = f(a)$

Not all limits can be evaluated by direct substitution.

Note: Special Cases – these are cases where the Limit Laws cannot be applied.

$rac{0}{0}, rac{\infty}{\infty}, 0\cdot\infty, \infty-\infty, 1^{\infty}, 0^{0}, \infty^{0}$
--

Exercise 2 Use the Limit Laws and the graphs of *f* and *g* to evaluate the following limits, if they exist:

Exercise 3 Evaluate the following limits:

a)
$$\lim_{x \to 5} (2x^2 - 3x + 4)$$

b) $\lim_{x \to 2} \frac{x^3 + 2x^2 - 1}{5 - 3x}$
c) $\lim_{x \to 0} (2\sin x - 1)$
d) $\lim_{x \to 0} \sec x$
e) $\lim_{x \to 2} (-x^2 + 5x - 2)$
f) $\lim_{z \to 0} (2z - 8)^{\frac{1}{3}}$

Solutions

Note: Functions with the Direct Substitution Property are called *continuous at a* and will be studied in Section 2.5. However, not all limits can be evaluated by direct substitution.

Eliminating Zero Denominators Algebraically (2.3)

Some of the recommended methods are : simplifying the rational expression, rationalizing the numerator or denominator, substitution.

Exercise 4 Find the following limits:

a)
$$\lim_{x \to 1} \frac{x^2 - 1}{x - 1}$$
 b) $\lim_{x \to -3} \frac{x + 3}{x^2 + 4x + 3}$ c) $\lim_{y \to 0} \frac{5y^3 + 8y^2}{3y^4 - 16y^2}$

d)
$$\lim_{u \to 1} \frac{u^4 - 1}{u^3 - 1}$$
 e) $\lim_{x \to 1} \frac{x^2 - 1}{x^2 + x - 2}$ f) $\lim_{t \to 0} \frac{t^2 + t - 2}{t^2 - 1}$

g)
$$\lim_{t \to 1} \frac{t^2 + t - 2}{t^2 - 1}$$
 h) $\lim_{h \to 0} \frac{(2+h)^3 - 8}{h}$ i) $\lim_{u \to 2} \frac{\sqrt{4u + 1} - 3}{u - 2}$

j)
$$\lim_{x \to 4} \frac{4x - x^2}{2 - \sqrt{x}}$$
 k) $\lim_{x \to -1} \frac{\sqrt{x^2 + 8 - 3}}{x + 1}$ l) $\lim_{h \to 1} \frac{\sqrt{5h + 4} - 2}{h}$

m)
$$\lim_{h \to 0} \frac{\sqrt{5h+4}-2}{h}$$
 n) $\lim_{x \to 1} \frac{1}{x-1}$ o) $\lim_{t \to 0} \left(\frac{1}{t} - \frac{1}{t^2 + t}\right)$

p)
$$\lim_{x \to 2} \frac{\sqrt{6-x}-2}{\sqrt{3-x}-1}$$
 r) $\lim_{x \to 0} \frac{\sqrt[3]{1+cx}-1}{x}$ s) $\lim_{x \to 1} \frac{\sqrt[3]{x}-1}{\sqrt{x}-1}$

Answers: a) 2; b) -1/2; c) -1/2; d) 4/3; e) 2/3; f) 2; g) 3/2; h) 12; i) 2/3; j) 16; k) -1/3; l) 1; m) 5/4; n) -1; o) 1; p) 1/2; r) c/3; s) 2/3

Exercise 5 Evaluate $\lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$ for the given value of x and function f.

a)
$$f(x) = x^2, x = -2$$
 b) $f(x) = \sqrt{x}, x = 7$

Answers: a) -4; b) $\frac{1}{2\sqrt{7}}$.

Exercise 6 Find $\lim_{x \to 1} g(x)$ if $g(x) = \begin{cases} x+1 & \text{if } x \neq 1 \\ p & \text{if } x = 1 \end{cases}$.

Solutions

The next two theorems give two additional properties of limits.

The Squeeze Theorem (The Sandwich Theorem) (2.3)

Hypothesis: (1) $g(x) \le f(x) \le h(x)$ for all x in some open interval containing a , except possibly at a and (2) $\lim_{x \to a} g(x) = \lim_{x \to a} h(x) = L$ Conclusion: $\lim_{x \to a} f(x) = L$

Theorem	Hypothesis:	(1) $f(x) \le g(x)$ for all x in some open interval containing a , except possibly at a and
		(2) $\lim_{x \to a} f(x)$ and $\lim_{x \to a} g(x)$ both exist
	Conclusion:	$\lim_{x \to a} f(x) \le \lim_{x \to a} g(x)$

Exercise 7 If
$$\sqrt{5-2x^2} \le f(x) \le \sqrt{5-x^2}$$
 for $-1 \le x \le 1$, find $\lim_{x \to 0} f(x)$.

Exercise 8 Find the following limits:

a)
$$\lim_{x \to 0} x^2 \sin \frac{1}{x}$$
 b) $\lim_{x \to 0} x^2 \cos(20px)$ c) $\lim_{x \to 0} x \sin \frac{1}{x}$ d) $\lim_{x \to 0} \sqrt{x^3 + x^2} \sin \frac{p}{x}$

- **Exercise 9** If $x^4 \le f(x) \le x^2$ for $-1 \le x \le 1$, and $x^2 \le f(x) \le x^4$ for x < -1 and x > 1, at what points *c* do you automatically know $\lim_{x \to c} f(x)$? What can you say about the value of the limit at these points?
- **Exercise 10** Is there a number *a* such that $\lim_{x \to -2} \frac{3x^2 + ax + a + 3}{x^2 + x 2}$ exist? Of so, find the value of *a* and the value of the limit.

Exercise 11 Evaluate
$$\lim_{x \to 0} \frac{|2x-1| - |2x+1|}{x}$$
.

Solutions