PART I Sections 2.2 \& 2.3 - Limit of a Function and Limit Laws

In section 2.1 we saw how limits arise when we want to find the tangent to a curve or the velocity of an object. Now we turn our attention to limits in general and methods for computing them. We will begin with an informal definition of limit.

Example 1 Let's investigate the behavior of the function $\qquad$ for values of $x$ near 2 .

Similarly, we define the notion of a limit for an arbitrary function.

Definition 1 If $f$ is a function defined on an open interval about $a$, except possibly at $a$ itself, we write

$$
\lim _{x \rightarrow a} f(x)=L
$$

and say "the limit of $f(x)$, as $x$ approaches $a$, equals $L$ "
if we can make the values of $f(x)$ arbitrarily close to $L$ (as close to $L$ as we like) by taking $x$ sufficiently close to $a$ (on either side of $a$ ) but not equal to $a$.

Roughly speaking, this says that the values of $f(x)$ become closer and closer to the number $L$ as $x$ approaches the number $a$ (from either side of $a$ ) but $x \neq a$.

Notes: - In finding the limit of $f(x)$ as $x \rightarrow a$ we never consider $x=a$.

- $f(x)$ need not even be defined when $x=a$
- The only thing that matters is how $f$ is defined near $a$

Example 2 Here we have three functions. This example illustrates that the limit of a function does not depend on how the function is defined at the point being approached.

## Exercise 1

For the function $g(x)$ graphed here, find the following limits or explain why they do not exist.
a) $\lim _{x \rightarrow 1} g(x)$
b) $\lim _{x \rightarrow 2} g(x)$
c) $\lim _{x \rightarrow 3} g(x)$
d) $\lim _{x \rightarrow 2.5} g(x)$


## Example3 Here are some ways that limits can fail to exist.


(a) Unit step function $U(x)$

(b) $g(x)$

(c) $f(x)$

## Theorem - Limit Laws (2.3)

This theorem shows us how to calculate limits of functions that are arithmetic combinations of functions having known limits.

If $\lim _{x \rightarrow a} f(x)$ and $\lim _{x \rightarrow a} g(x)$ exist, then

1. Sum Rule:

$$
\lim _{x \rightarrow a}(f(x) \pm g(x))=\lim _{x \rightarrow a} f(x) \pm \lim _{x \rightarrow a} g(x)
$$

2. Product Rule:

$$
\lim _{x \rightarrow a}(f(x) \cdot g(x))=\lim _{x \rightarrow a} f(x) \cdot \lim _{x \rightarrow a} g(x)
$$

3. Quotient Rule:
$\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\frac{\lim _{x \rightarrow a} f(x)}{\lim _{x \rightarrow a} g(x)}, \lim _{x \rightarrow a} g(x) \neq 0$
4. Constant Multiple Rule: $\quad \lim _{x \rightarrow a}(c \cdot f(x))=c \cdot \lim _{x \rightarrow a} f(x), c \in \mathbb{R}$
5. Power Rule:
$\lim _{x \rightarrow a}[f(x)]^{n}=\left[\lim _{x \rightarrow a} f(x)\right]^{n}$, where $n$ is a positive integer
6. Root Rule:
$\lim _{x \rightarrow a} \sqrt[n]{f(x)}=\sqrt[n]{\lim _{x \rightarrow a} f(x)}$, where $n$ is a positive integer.
If $n$ is even, we assume that $\lim _{x \rightarrow a} f(x)>0$

## Special Limits (2.3)

The Constant Function $\quad \lim _{x \rightarrow a} c=c$
The Identity Function $\quad \lim _{x \rightarrow a} x=a$

Direct Substitution Property
If $f(x)$ is a polynomial or a rational function and a is in the domain of $f$, then $\lim _{x \rightarrow a} f(x)=f(a)$

Not all limits can be evaluated by direct substitution.
Note: Special Cases - these are cases where the Limit Laws cannot be applied.

$$
\frac{0}{0}, \frac{\infty}{\infty}, 0 \cdot \infty, \infty-\infty, 1^{\infty}, 0^{0}, \infty^{0}
$$

Exercise 2 Use the Limit Laws and the graphs of $f$ and $g$ to evaluate the following limits, if they exist:
a) $\lim _{x \rightarrow-2}[f(x)+5 g(x)]$
b) $\lim _{x \rightarrow 1}[f(x) g(x)]$

c) $\lim _{x \rightarrow 2} \frac{f(x)}{g(x)}$

Exercise 3 Evaluate the follow ing limits:
a) $\lim _{x \rightarrow 5}\left(2 x^{2}-3 x+4\right)$
b) $\lim _{x \rightarrow-2} \frac{x^{3}+2 x^{2}-1}{5-3 x}$
c) $\lim _{x \rightarrow 0}(2 \sin x-1)$
d) $\operatorname{limsec}_{x \rightarrow 0} x$
e) $\lim _{x \rightarrow 2}\left(-x^{2}+5 x-2\right)$
f) $\lim _{z \rightarrow 0}(2 z-8)^{\frac{1}{3}}$
g) $\lim _{t \rightarrow 0}\left(t^{3}+\frac{\cos 5 t}{10,000}\right)$

Solutions

Note: Functions with the Direct Substitution Property are called continuous at $a$ and will be studied in Section 2.5 . However, not all limits can be evaluated by direct substitution.

## Eliminating Zero Denominators Algebraically (2.3)

Some of the recommended methods are : simplifying the rational expression, rationalizing the numerator or denominator, substitution.

Exercise 4 Find the following limits:
a) $\lim _{x \rightarrow 1} \frac{x^{2}-1}{x-1}$
b) $\quad \lim _{x \rightarrow-3} \frac{x+3}{x^{2}+4 x+3}$
c) $\quad \lim _{y \rightarrow 0} \frac{5 y^{3}+8 y^{2}}{3 y^{4}-16 y^{2}}$
d) $\quad \lim _{u \rightarrow 1} \frac{u^{4}-1}{u^{3}-1}$
e) $\quad \lim _{x \rightarrow 1} \frac{x^{2}-1}{x^{2}+x-2}$
f) $\quad \lim _{t \rightarrow 0} \frac{t^{2}+t-2}{t^{2}-1}$
g) $\quad \lim _{t \rightarrow 1} \frac{t^{2}+t-2}{t^{2}-1}$
h) $\quad \lim _{h \rightarrow 0} \frac{(2+h)^{3}-8}{h}$
i) $\quad \lim _{u \rightarrow 2} \frac{\sqrt{4 u+1}-3}{u-2}$
j) $\quad \lim _{x \rightarrow 4} \frac{4 x-x^{2}}{2-\sqrt{x}}$
k) $\quad \lim _{x \rightarrow-1} \frac{\sqrt{x^{2}+8}-3}{x+1}$

1) $\quad \lim _{h \rightarrow 1} \frac{\sqrt{5 h+4}-2}{h}$
m) $\quad \lim _{h \rightarrow 0} \frac{\sqrt{5 h+4}-2}{h}$
n) $\quad \lim _{x \rightarrow 1} \frac{\frac{1}{x}-1}{x-1}$
o) $\quad \lim _{t \rightarrow 0}\left(\frac{1}{t}-\frac{1}{t^{2}+t}\right)$
p) $\quad \lim _{x \rightarrow 2} \frac{\sqrt{6-x}-2}{\sqrt{3-x}-1}$
r) $\quad \lim _{x \rightarrow 0} \frac{\sqrt[3]{1+c x}-1}{x}$
s) $\quad \lim _{x \rightarrow 1} \frac{\sqrt[3]{x}-1}{\sqrt{x}-1}$

Answers: a) 2 ; b) $-1 / 2$; c) $-1 / 2$; d) $4 / 3$; e) $2 / 3$; f) 2 ; g) $3 / 2$; h) 12 ; i) $2 / 3$; j) 16 ; k) $-1 / 3$; l) 1 ; m) $5 / 4$; n) -1 ; o) 1 ; p) $1 / 2$; r) c/3; s) $2 / 3$

Exercise 5 Evaluate $\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$ for the given value of $x$ and function $f$.
a) $f(x)=x^{2}, x=-2$
b) $f(x)=\sqrt{x}, x=7$

Answers: a) -4 ; b) $\frac{1}{2 \sqrt{7}}$.

Exercise 6 Find $\lim _{x \rightarrow 1} g(x)$ if $g(x)=\left\{\begin{array}{ll}x+1 & \text { if } x \neq 1 \\ \pi & \text { if } x=1\end{array}\right.$.

Solutions

The next two theorems give two additional properties of limits.

## The Squeeze Theorem ( The Sandwich Theorem) (2.3)

Hypothesis:
(1) $g(x) \leq f(x) \leq h(x)$ for all $x$ in some open interval containing a , except possibly at a
and
(2) $\lim _{x \rightarrow a} g(x)=\lim _{x \rightarrow a} h(x)=L$

Conclusion:

$$
\lim _{x \rightarrow a} f(x)=L
$$



FIGURE 2.12 The graph of $f$ is
sandwiched between the graphs of $g$ and $h$.

Theorem Hypothesis: (1) $f(x) \leq g(x)$ for all $x$ in some open interval containing $a$, except possibly at $a$ and
(2) $\lim _{x \rightarrow a} f(x)$ and $\lim _{x \rightarrow a} g(x)$ both exist

Conclusion: $\quad \lim _{x \rightarrow a} f(x) \leq \lim _{x \rightarrow a} g(x)$

Exercise 7 If $\sqrt{5-2 x^{2}} \leq f(x) \leq \sqrt{5-x^{2}}$ for $-1 \leq x \leq 1$, find $\lim _{x \rightarrow 0} f(x)$.

Exercise 8 Find the follow ing limits:
a) $\lim _{x \rightarrow 0} x^{2} \sin \frac{1}{x}$
b) $\lim _{x \rightarrow 0} x^{2} \cos (20 \pi x)$
c) $\lim _{x \rightarrow 0} x \sin \frac{1}{x}$
d) $\lim _{x \rightarrow 0} \sqrt{x^{3}+x^{2}} \sin \frac{\pi}{x}$

Exercise 9 If $x^{4} \leq f(x) \leq x^{2}$ for $-1 \leq x \leq 1$, and $x^{2} \leq f(x) \leq x^{4}$ for $x<-1$ and $x>1$, at what points $c$ do you automatically know $\lim _{x \rightarrow c} f(x)$ ? What can you say about the value of the limit at these points?

Exercise 10 Is there a number $a$ such that $\lim _{x \rightarrow-2} \frac{3 x^{2}+a x+a+3}{x^{2}+x-2}$ exist? Of so, find the value of $a$ and the value of the limit.

Exercise 11 Evaluate $\lim _{x \rightarrow 0} \frac{|2 x-1|-|2 x+1|}{x}$.

Solutions

