Section 2.5-Continuity

We noticed in Section 2.3 that the limit of a function as x approaches a can often be found simply by calculating the value of the function at a. Functions with this property are called continuous at a. We will see that the mathematical definition of continuity corresponds closely with the meaning of the word continuity in everyday language. (A continuous process is one that takes place gradually, without interruption or abrupt change.)

Notes about intervals:

- $[a, b]$ - closed interval
- $(a, b),(a, \infty),(-\infty, b)$ - open intervals
- If f is defined on $[a, b]$, we say that c is an interior point if and only if $c \in(a, b)$.

We define continuity at a point in a function's domain.

Definition 1 1) A function f is continuous at an interior point \boldsymbol{c} of its domain if and only if

$$
\lim _{x \rightarrow c} f(x)=f(c) .
$$

2) A function f is continuous at a left endpoint \boldsymbol{a} or is continuous at a right endpoint \boldsymbol{b} of its domain if and only if

$$
\lim _{x \rightarrow a^{+}} f(x)=f(a) \quad \text { or } \quad \lim _{x \rightarrow b^{-}} f(x)=f(b) \text {, respectively. }
$$

Note: The definition requires three things to happen in order for a function f to be continuous at a point c :

1. $f(c)$ is defined (that is, c is in the domain)
2. $\lim _{x \rightarrow c} f(x)$ exists
3. $\lim _{x \rightarrow c} f(x)=f(c)$

Definition 2 If f is not continuous at c, we say that f is discontinuous at \boldsymbol{c}, or f has a discontinuity at c.

Notes:

- The definition says that f is continuous at c if $f(x)$ approaches $f(c)$ as x approaches c. Thus, a continuous function f has the property that a small change in x produces only a small change in $f(x)$. In fact, the change in $f(x)$ can be kept as small as we like by keeping the change in x sufficiently small.
- Geometrically, we can think of a function that is continuous at every number in an interval as a function whose graph has no break in it. The graph can be drawn without removing the pen from the paper.

Example 1 Find the points at which the function f in the figure is continuous and the points at which f is not continuous.

How to detect discontinuities when a function is defined by a formula?

Example 2
a) $f(x)=\frac{x^{2}-x-2}{x-2}$
b) $f(x)= \begin{cases}\frac{1}{x^{2}}, & x \neq 0 \\ 1, & x=0\end{cases}$

Definition 3 A function f is continuous from the right at a point c if and only if $\lim _{x \rightarrow c^{+}} f(x)=f(c)$.
A function f is continuous from the left at a point c if and only if $\lim _{x \rightarrow c^{-}} f(x)=f(c)$.
A function is continuous on an interval if and only if it is continuous at every number in the interval. (we understand continuity at an endpoint to mean continuity from the right or left)

Example 3 Show that the function $f(x)=1-\sqrt{1-x^{2}}$ is continuous on the interval $[-1,1]$.

Theorem - Properties of Continuous Functions

If the functions f and g are continuous at c, then the following functions are continuous at c :

$$
\begin{aligned}
& f+g, f-g \\
& k \cdot f, \text { for any } k \in \mathbb{R} \\
& f g \\
& \frac{f}{g}, g(c) \neq 0 \\
& f^{n}, n \in \mathbb{N} \\
& \sqrt[n]{f}, n \in \mathbb{N}, \text { provided that } f \text { is defined on an open interval containing } c
\end{aligned}
$$

Theorem

Any polynomial function is continuous on $(-\infty, \infty)$.
Any rational function is continuous on its domain.

Theorem

The following types of functions are continuous at every point in their domain:

polynomials	rational functions
trigonometric functions	inverse trigonometric functions functions
exponential functions	logarithmic functions

Example 4 Where is the function $f(x)=\frac{\ln x+\tan ^{-1} x}{x^{2}-1}$ continuous?

Theorem - Composition of Continuous Functions
If f is continuous at c and g is continuous at $f(c)$, then $g \circ f$ is continuous at c.

Theorem - Limits of Continuous Functions
If g is continuous at a point b and $\lim _{x \rightarrow c} f(x)=b$, then

$$
\lim _{x \rightarrow c}(g \circ f)(x)=\lim _{x \rightarrow c} g(f(x))=g\left(\lim _{x \rightarrow c} f(x)\right)
$$

Example 5 Evaluate $\lim _{x \rightarrow 1} \sin ^{-1}\left(\frac{1-\sqrt{x}}{1-x}\right)$.

Example 6 Evaluate $\lim _{x \rightarrow 0} \sqrt{x+1} \cdot e^{\tan x}$.

Continuous Extension to a Point

Example 7 Let $f(x)=\left\{\begin{array}{ll}\frac{\sin x}{x}, & x \neq 0 \\ ?, & x=0\end{array}\right.$.
Can we extend the function's domain to include $x=0$ such that the extended function is continuous?

Exercise 1 Find the following limits:
a) $\lim _{x \rightarrow \pi} \sin (x-\sin x)$
b) $\quad \lim _{x \rightarrow 0} \tan \left(\frac{\pi}{4} \cdot \cos \left(\sin x^{\frac{1}{3}}\right)\right)$

Exercise 2 For what values of a and b is the given function continuous?

$$
f(x)=\left\{\begin{array}{l}
\frac{x^{2}-4}{x-2}, \quad x<2 \\
2 a x^{2}-b x+3, \quad 2 \leq x<3 \\
2 x-a+b, \quad x \geq 3
\end{array}\right.
$$

Exercise 3 Let $f(x)= \begin{cases}x+2, & x<0 \\ e^{x}, & 0 \leq x \leq 1 \\ 2-x, & x>1\end{cases}$
a) Find the numbers at which the function is discontinuous.
b) At which of these points is f continuous from the right, from the left, or neither?
c) Sketch the graph of f.

Exercise 4 The gravitational force exerted by Earth on a unit mass at a distance r from the center of the planet is

$$
F(r)=\left\{\begin{array}{ll}
\frac{G M r}{R^{3}} & \text { if } r<R \\
\frac{G M}{r^{2}} & \text { if } r \geq R
\end{array} .\right.
$$

where M is the mass of Earth, R is its radius, and G is the gravitational constant. Is F a continuous function of r ?

Theorem

$$
\text { A function } \mathrm{f} \text { is continuous at } a \text { if and only if } \lim _{h \rightarrow 0} f(a+h)=f(a) \text {. }
$$

Theorem - The Intermediate Theorem for Continuous Functions

If f is a continuous function on a closed interval $[a, b]$, and if y_{0} is any value between $f(a)$ and $f(b)$, then $y_{0}=f(c)$ for some c in $[a, b]$.

Notes:

- The Intermediate Value Theorem states that a continuous function takes on every intermediate value between $f(a)$ and $f(b)$.
- Geometrically, the Theorem says that any horizontal line crossing the y-axis between the numbers $f(a)$ and $f(b)$ will cross the graph at least once in the interval $[a, b]$
- One use of the Theorem is in locating roots of equations.

Exercise 5 Show that there is a root of the equation $x^{3}-x-1=0$ between 1 and 2 .

Exercise 6 Prove that sine is a continuous function.

Exercise 7 a) Show that the absolute value function $F(x)=|x|$ is continuous everywhere.
b) Prove that if f is a continuous function on an interval, then so is $|f|$.
c) Is the converse of the statement in part (b) also true? In other words, if $|f|$ is continuous, does it follow that f is continuous? If so, prove it. If not, find a counterexample.

Solutions

