6.1 Angle Measure

The measure of an angle is the amount of rotation about the vertex required to move the initial side onto the terminal side.
Units: I) Degrees - One degree is $\frac{1}{360}$ of a complete revolution.
1 degree $=60$ minutes
1 minute $=60$ seconds
II) Radians - One radian is the measure of a central angle (in a circle) that subtends an arc of length equal to its radius

$$
360^{\circ}=2 \pi
$$

Angles in standard position An angle is in standard position if it is drawn in the xy-plane with its vertex at the origin and its initial side on the positive x-axis.

(a)

(b)

(c)

(d)

FIGURE 5 Angles in standard position

Coterminal angles
Two angles are coterminal if their sides coincide. For examples, (a) and (c) are coterminal.

Length of a circular arc In a circle of radius r, the length of an arc that subtends a central angle of θ radians is

$$
s=r \theta .
$$

Area of a circular sector $I n$ a circle of radius r, the area A of a sector with a central angle of θ radians is

$$
A=\frac{1}{2} r^{2} \theta
$$

Linear speed of an object traveling in circular motion

$$
\begin{aligned}
& v=\frac{s}{t}
\end{aligned} \quad \begin{aligned}
& v=\text { linear speed of the object that moves around a circle of radius } r \\
& s=\text { distance traveled in time } t \text { around the circle }
\end{aligned}
$$

Angular speed of the object traveling in circular motion

$$
\begin{aligned}
& \omega=\frac{\theta}{t} \\
& \omega=\text { angular speed of the object that moves around a circle } \\
& \theta=\text { angle(in radians) that is swept out in time } t
\end{aligned}
$$

$$
v=r \omega
$$

